CSCI-4530/6530
Advanced Computer Graphics

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S15/

Barb Cutler
cutler@cs.rpi.edu
MRC 331A

Luxo Jr.

Pixar Animation Studios, 1986
Topics for the Semester

- **Meshes**
 - representation
 - simplification
 - subdivision surfaces
 - construction/generation
 - volumetric modeling

- **Simulation**
 - particle systems, cloth
 - rigid body, deformation
 - wind/water flows
 - collision detection
 - weathering

- **Rendering**
 - ray tracing, shadows
 - appearance models
 - local vs. global illumination
 - radiosity, photon mapping, subsurface scattering, etc.

 - procedural modeling
 - texture synthesis
 - non-photorealistic rendering
 - hardware & more …

Mesh Simplification

Hoppe “Progressive Meshes” SIGGRAPH 1996
Mesh Generation & Volumetric Modeling

Cutler et al., “Simplification and Improvement of Tetrahedral Models for Simulation” 2004

Modeling – Subdivision Surfaces

Hoppe et al., “Piecewise Smooth Surface Reconstruction” 1994

Geri’s Game Pixar 1997
Particle Systems

Star Trek: The Wrath of Khan 1982

Physical Simulation

- Rigid Body Dynamics
- Collision Detection
- Fracture
- Deformation

Müller et al., “Stable Real-Time Deformations” 2002
Fluid Dynamics

Foster & Mataxas, 1996

“Visual Simulation of Smoke”
Fedkiw, Stam & Jensen
SIGGRAPH 2001

Ray Casting/Tracing

- For every pixel
 - construct a ray from the eye
 - For every object in the scene
 - Find intersection with the ray
 - Keep the closest
- Shade (interaction of light and material)
- Secondary rays
 (shadows, reflection, refraction)

“An Improved Illumination Model for Shaded Display”
Whitted 1980
Appearance Models

Subsurface Scattering

Jensen et al., “A Practical Model for Subsurface Light Transport” 2001
Syllabus & Course Website

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S15/

• Which version should I register for?
 – CSCI 6530 : 3 units of graduate credit
 – CSCI 4530 : 4 units of undergraduate credit
(same lectures, assignments, quizzes, & grading criteria)

• This is an intensive course aimed at graduate students and undergraduates interested in graphics research, involving significant reading & programming each week. Taking this course in a 5 course overload semester is discouraged.

• Other Questions?

Participation/Laptops in Class Policy

• Lecture is intended to be discussion-intensive
• Laptops, tablet computers, smart phones, and other internet-connected devices are not allowed
 – Except during the discussion of the day's assigned paper: students may use their laptop/tablet to view an electronic version of the paper
 – Other exceptions to this policy are negotiable; please see the instructor in office hours
Grades

- For CSCI majors, ACG counts as a CSCI communication-intensive course
- [new this term] In order to pass ACG, you must have a passing average in each component (LMS reading discussions, homeworks, quizzes, & final project)

Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic & Perspective Projections
- Example: Iterated Function Systems (IFS)
What is a Transformation?

• Maps points \((x, y)\) in one coordinate system to points \((x', y')\) in another coordinate system

\[
x' = ax + by + c
y' = dx + ey + f
\]

• For example, Iterated Function System (IFS):

Simple Transformations

• Can be combined
• Are these operations invertible?

Yes, except scale = 0
Transformations are used to:

- Position objects in a scene
- Change the shape of objects
- Create multiple copies of objects
- Projection for virtual cameras
- Describe animations

Rigid-Body / Euclidean Transforms

- Preserves distances
- Preserves angles
Similitudes / Similarity Transforms

- Preserves angles

\[L(p + q) = L(p) + L(q) \]
\[L(ap) = aL(p) \]
Affine Transformations

- preserves parallel lines

Projective Transformations

- preserves lines
General (Free-Form) Transformation

- Does not preserve lines
- Not as pervasive, computationally more involved

Sederberg and Parry, Siggraph 1986

Outline

- Course Overview
- Classes of Transformations
 - Representing Transformations
- Combining Transformations
- Orthographic & Perspective Projections
- Example: Iterated Function Systems (IFS)
How are Transforms Represented?

\[x' = ax + by + c \]
\[y' = dx + ey + f \]

\[
\begin{pmatrix}
 x' \\
 y'
\end{pmatrix} = \begin{pmatrix} a & b \\ d & e \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} c \\ f \end{pmatrix}
\]

\[p' = M p + t \]

Homogeneous Coordinates

- Add an extra dimension
 - in 2D, we use 3 x 3 matrices
 - In 3D, we use 4 x 4 matrices
- Each point has an extra value, w

\[
\begin{pmatrix}
 x' \\
 y' \\
 z' \\
 w'
\end{pmatrix} = \begin{pmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}
\]

\[p' = M p \]
Translation in homogeneous coordinates

\[
\begin{align*}
 x' &= ax + by + c \\
 y' &= dx + ey + f
\end{align*}
\]

<table>
<thead>
<tr>
<th>Affine formulation</th>
<th>Homogeneous formulation</th>
</tr>
</thead>
</table>
| \[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix} a & b \\ d & e \end{bmatrix} \begin{bmatrix} x \\
 y
\end{bmatrix} + \begin{bmatrix} c \\
 f
\end{bmatrix}
\] | \[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\
 y \\
 1
\end{bmatrix}
\]
| \[p' = M p + t \] | \[p' = M p \] |

Homogeneous Coordinates

- Most of the time \(w = 1 \), and we can ignore it

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

- If we multiply a homogeneous coordinate by an **affine matrix**, \(w \) is unchanged
Homogeneous Visualization

- Divide by \(w \) to normalize (homogenize)
- \(W = 0? \) *Point at infinity (direction)*

\[
\begin{align*}
(0, 0, 1) &= (0, 0, 2) = \\
(7, 1, 1) &= (14, 2, 2) = \\
(4, 5, 1) &= (8, 10, 2) =
\end{align*}
\]

Translate \((tx, ty, tz)\)

- Why bother with the extra dimension?
 Because now translations can be encoded in the matrix!

\[
\begin{pmatrix}
x' \\
y' \\
z' \\
1
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 & tx \\
0 & 1 & 0 & ty \\
0 & 0 & 1 & tz \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z \\
1
\end{pmatrix}
\]
Scale (s_x, s_y, s_z)

- Isotropic (uniform) scaling: $s_x = s_y = s_z$

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 s_x & 0 & 0 & 0 \\
 0 & s_y & 0 & 0 \\
 0 & 0 & s_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

Rotation

- About z axis

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 \cos \theta & -\sin \theta & 0 & 0 \\
 \sin \theta & \cos \theta & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Rotation

- About \((k_x, k_y, k_z)\), a unit vector on an arbitrary axis (Rodrigues Formula)

\[
\begin{pmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{pmatrix} =
\begin{pmatrix}
 k_x k_x (1-c) + c & k_x k_y (1-c) - k_z s & k_x k_z (1-c) + k_y s & 0 \\
 k_y k_x (1-c) + k_z s & k_y k_y (1-c) + c & k_y k_z (1-c) - k_x s & 0 \\
 k_z k_x (1-c) - k_y s & k_z k_y (1-c) - k_x s & k_z k_z (1-c) + c & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix}
\]

where \(c = \cos \theta\) \& \(s = \sin \theta\)

Storage

- Often, \(w\) is not stored (always 1)
- Needs careful handling of direction vs. point
 - Mathematically, the simplest is to encode directions with \(w = 0\)
 - In terms of storage, using a 3-component array for both direction and points is more efficient
 - Which requires to have special operation routines for points vs. directions
Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- **Combining Transformations**
- Orthographic & Perspective Projections
- Example: Iterated Function Systems (IFS)

How are transforms combined?

Scale then Translate

Use matrix multiplication: \(p' = T(Sp) = TSp \)

\[
TS = \begin{bmatrix}
1 & 0 & 3 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
2 & 0 & 3 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{bmatrix}
\]

Caution: matrix multiplication is **NOT** commutative!
Non-commutative Composition

Scale then Translate: \[p' = T(Sp) = TS \ p \]

Translate then Scale: \[p' = S(Tp) = ST \ p \]

\[
TS = \begin{bmatrix}
1 & 0 & 3 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{bmatrix} \quad ST = \begin{bmatrix}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 3 \\
0 & 2 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
= \begin{bmatrix}
2 & 0 & 3 \\
0 & 2 & 1 \\
0 & 0 & 1 \\
\end{bmatrix}
= \begin{bmatrix}
2 & 0 & 6 \\
0 & 2 & 2 \\
0 & 0 & 1 \\
\end{bmatrix}
\]
Outline

• Course Overview
• Classes of Transformations
• Representing Transformations
• Combining Transformations
• Orthographic & Perspective Projections
• Example: Iterated Function Systems (IFS)

Orthographic vs. Perspective

• Orthographic

• Perspective
Simple Orthographic Projection

- Project all points along the z axis to the $z = 0$ plane

\[
\begin{pmatrix}
 x \\
 y \\
 0 \\
 1
\end{pmatrix} = \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix}
\]

Simple Perspective Projection

- Project all points along the z axis to the $z = d$ plane, eyepoint at the origin:

By similar triangles:
\[
x' / x = d / z
\]
\[
x' = (x*d) / z
\]

\[
\begin{pmatrix}
 x' \\
 y' \\
 d \\
 1
\end{pmatrix} = \begin{pmatrix}
 x \\
 y \\
 z \\
 z / d
\end{pmatrix} = \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 1/d & 0
\end{pmatrix} \begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix}
\]
Alternate Perspective Projection

- Project all points along the z axis to the $z = 0$ plane, eyepoint at the (0,0,-d):

 By similar triangles:
 \[
 x' / x = d / (z + d) \\
 x' = (x' d) / (z + d)
 \]

 \[
 \begin{pmatrix}
 x \\
 y \\
 0 \\
 1
 \end{pmatrix}
 \begin{pmatrix}
 x \\
 y \\
 0 \\
 (z + d) / d
 \end{pmatrix}
 =
 \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 1 / d & 1
 \end{pmatrix}
 \begin{pmatrix}
 x \\
 y \\
 z \\
 1
 \end{pmatrix}
 \]

 homogenize

 In the limit, as $d \to \infty$

 this perspective projection matrix...

 \[
 \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 1 / d & 1
 \end{pmatrix}
 \to
 \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1
 \end{pmatrix}
 \]

 ...is simply an orthographic projection
Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic & Perspective Projections
- Example: Iterated Function Systems (IFS)

Iterated Function Systems (IFS)

- Capture self-similarity
- Contraction
 (reduce distances)
- An attractor is a fixed point
 \[A = \bigcup f_i(A) \]
Example: Sierpinski Triangle

- Described by a set of n affine transformations
- In this case, $n = 3$
 - translate & scale by 0.5

for "lots" of random input points (x_0, y_0)

for $j=0$ to num_iters

 randomly pick one of the transformations

 $(x_{k+1}, y_{k+1}) = f_i (x_k, y_k)$

 display (x_k, y_k)

Increasing the number of iterations
Another IFS: The Dragon

3D IFS in OpenGL
Assignment 0: OpenGL Warmup

- Get familiar with:
 - C++ environment
 - OpenGL
 - Transformations
 - simple Vector & Matrix classes

- Have Fun!
- Due ASAP (start it today!)
- ¼ of the points of the other HWs (but you should still do it and submit it!)

Questions?

Image by Henrik Wann Jensen
For Next Time:

• Read Hugues Hoppe “Progressive Meshes” SIGGRAPH 1996
• Post a comment or question on the course WebCT/LMS discussion by 10am on Friday

• How do we represent meshes?
• How to automatically decide what parts of the mesh are important / worth preserving?
• Algorithm performance: memory, speed?
• What were the original target applications? Are those applications still valid? Are there other modern applications that can leverage this technique?