CSCI-4530/6530
Advanced Computer Graphics

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S17/

Barb Cutler
cutler@cs.rpi.edu
MRC 331A

Topics for the Semester

• Meshes
 – representation
 – simplification
 – subdivision surfaces
 – construction/generation
 – volumetric modeling
• Simulation
 – particle systems, cloth
 – rigid body, deformation
 – wind/water flows
 – collision detection
 – weathering
• Rendering
 – ray tracing, shadows
 – appearance models
 – local vs. global illumination
 – radiosity, photon mapping, subsurface scattering, etc.
• procedural modeling
• texture synthesis
• non-photorealistic rendering
• hardware & more …

Mesh Simplification

Hoppe “Progressive Meshes” SIGGRAPH 1996
Mesh Generation & Volumetric Modeling

Cutler et al., “Simplification and Improvement of Tetrahedral Models for Simulation” 2004

Modeling – Subdivision Surfaces

Hoppe et al., “Piecewise Smooth Surface Reconstruction” 1994

Geri’s Game Pixar 1997

Particle Systems

Star Trek: The Wrath of Khan 1982

Physical Simulation

- Rigid Body Dynamics
- Collision Detection
- Fracture
- Deformation

Müller et al., “Stable Real-Time Deformations” 2002
Fluid Dynamics

“Visual Simulation of Smoke”
Fedkiw, Stam & Jensen
SIGGRAPH 2001

Foster & Mataxas, 1996

Ray Casting/Tracing

• For every pixel
 construct a ray from the eye
 – For every object in the scene
 • Find intersection with the ray
 • Keep the closest

• Shade (interaction of light and material)
• Secondary rays
 (shadows, reflection, refraction)

“An Improved Illumination Model for Shaded Display”
Whitted 1980

Appearance Models

Wojciech Matusik

Subsurface Scattering

Jensen et al., “A Practical Model for Subsurface Light Transport” 2001

Henrik Wann Jensen
Syllabus & Course Website

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S17/

- Which version should I register for?
 - CSCI 6530 : 3 units of graduate credit
 - CSCI 4530 : 4 units of undergraduate credit
 (same lectures, assignments, quizzes, & grading criteria)

- This is an intensive course aimed at graduate students and undergraduates interested in graphics research, involving significant reading & programming each week. Taking this course in a 5 course overload semester is discouraged.

Grades

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S17/

- This course counts as “communications intensive” for undergraduates. As such, you must satisfactorily complete all readings, presentations, project reports to pass the course.
- As this is an elective (not required) course, I expect to grade this course: “A”, “A-”, “B+”, “B”, “B-”, or “F”
 - Don’t expect C or D level work to “pass”
 - I don’t want to give any “F”’s

Participation/Laptops in Class Policy

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S17/

- Lecture is intended to be discussion-intensive
- Laptops, tablet computers, smart phones, and other internet-connected devices are not allowed
 - Except during the discussion of the day’s assigned paper: students may use their laptop/tablet to view an electronic version of the paper
 - Other exceptions to this policy are negotiable; please see the instructor in office hours

Questions?
Outline

• Course Overview
• Classes of Transformations
• Representing Transformations
• Combining Transformations
• Orthographic & Perspective Projections
• Example: Iterated Function Systems (IFS)

What is a Transformation?

• Maps points \((x, y)\) in one coordinate system to points \((x', y')\) in another coordinate system

 \[
 x' = ax + by + c \\
 y' = dx + ey + f
 \]

• For example, Iterated Function System (IFS):

Simple Transformations

- Identity
- Translation
- Rotation
- Isotropic (Uniform) Scaling

Yes, except scale = 0

Transformations are used to:

• Position objects in a scene
• Change the shape of objects
• Create multiple copies of objects
• Projection for virtual cameras
• Describe animations
Rigid-Body / Euclidean Transforms

- Preserves distances
- Preserves angles

Similitudes / Similarity Transforms

- Preserves angles

Linear Transformations

Translation
Identity
Rotation
Scaling
Reflection
Shear

Affine Transformations

- preserves parallel lines

L(p + q) = L(p) + L(q)
L(ap) = a L(p)
Projective Transformations

- preserves lines

General (Free-Form) Transformation

- Does not preserve lines
- Not as pervasive, computationally more involved

Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic & Perspective Projections
- Example: Iterated Function Systems (IFS)

How are Transforms Represented?

\[x' = ax + by + c \]
\[y' = dx + ey + f \]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 a & b \\
 d & e
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix} +
\begin{bmatrix}
 c \\
 f
\end{bmatrix}
\]

\[p' = M p + t \]
Homogeneous Coordinates

- Add an extra dimension
 - In 2D, we use 3 x 3 matrices
 - In 3D, we use 4 x 4 matrices
- Each point has an extra value, \(w \)

\[
\begin{pmatrix}
 x' \\
 y' \\
 z' \\
 w'
\end{pmatrix} = \begin{pmatrix}
 a & b & c & d \\
 e & f & g & h \\
 i & j & k & l \\
 m & n & o & p
\end{pmatrix} \begin{pmatrix}
 x \\
 y \\
 z \\
 w
\end{pmatrix}
\]

\[p' = M p \]

Translation in homogeneous coordinates

- Affine formulation
 \[
 \begin{pmatrix}
 x' \\
 y'
\end{pmatrix} = \begin{pmatrix}
 a & b \\
 d & e
\end{pmatrix} \begin{pmatrix}
 x \\
 y
\end{pmatrix} + \begin{pmatrix}
 c \\
 f
\end{pmatrix}
\]

- Homogeneous formulation
 \[
 \begin{pmatrix}
 x' \\
 y' \\
 1
\end{pmatrix} = \begin{pmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
 x \\
 y \\
 1
\end{pmatrix}
\]

\[p' = M p + t \]

Homogeneous Visualization

- Most of the time \(w = 1 \), and we can ignore it

\[
\begin{pmatrix}
 x' \\
 y' \\
 z'
\end{pmatrix} = \begin{pmatrix}
 a & b & c & d \\
 e & f & g & h \\
 i & j & k & l
\end{pmatrix} \begin{pmatrix}
 x \\
 y \\
 z
\end{pmatrix}
\]

- If we multiply a homogeneous coordinate by an affine matrix, \(w \) is unchanged

- Divide by \(w \) to normalize (homogenize)
 - \(W = 0? \) *Point at infinity (direction)*

\[
\begin{pmatrix}
 (0, 0, 1) \\
 (7, 1, 1) \\
 (4, 5, 1)
\end{pmatrix} = \begin{pmatrix}
 (0, 0, 2) \\
 (14, 2, 2) \\
 (8, 10, 2)
\end{pmatrix} = \ldots
\]

\[
\begin{pmatrix}
 w = 1 \\
 w = 2
\end{pmatrix}
\]
Translate \((tx, ty, tz)\)

- Why bother with the extra dimension?
 Because now translations can be encoded in the matrix!

\[
\begin{bmatrix}
 x' \\
y' \\
z' \\
1
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & 0 & tx \\
 0 & 1 & 0 & ty \\
 0 & 0 & 1 & tz \\
 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]

\[
\text{Translate}(c,0,0)
\]

Scale \((sx, sy, sz)\)

- Isotropic (uniform) scaling: \(sx = sy = sz\)

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix} = \begin{bmatrix}
sx & 0 & 0 & 0 \\
0 & sy & 0 & 0 \\
0 & 0 & sz & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]

\[
\text{Scale}(s,s,s)
\]

Rotation

- About z axis

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix} = \begin{bmatrix}
cos \theta & -sin \theta & 0 & 0 \\
sin \theta & cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]

\[
\text{ZRotate}(\theta)
\]

Rotation

- About \((k_x, k_y, k_z)\), a unit vector on an arbitrary axis (Rodrigues Formula)

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix} = \begin{bmatrix}
k_k.(1-c)+c & k_k.(1-c)-k_s & k_k.(1-c)+k_y & 0 \\
k_k.(1-c)+k_s & k_k.(1-c)+c & k_k.(1-c)-k_s & 0 \\
k_k.(1-c)-k_s & k_k.(1-c)-k_s & k_k.(1-c)+c & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]

where \(c = cos \theta\) & \(s = sin \theta\)

\[
\text{Rotate}(k, \theta)
\]
Storage

- Often, w is not stored (always 1)
- Needs careful handling of direction vs. point
 - Mathematically, the simplest is to encode directions with $w = 0$
 - In terms of storage, using a 3-component array for both direction and points is more efficient
 - Which requires to have special operation routines for points vs. directions

Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic & Perspective Projections
- Example: Iterated Function Systems (IFS)

How are transforms combined?

Scale then Translate

Use matrix multiplication: $p' = T(S p) = TS p$

$$TS = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Caution: matrix multiplication is NOT commutative!

Non-commutative Composition

Scale then Translate: $p' = T(S p) = TS p$

Translate then Scale: $p' = S(T p) = ST p$
Non-commutative Composition

Scale then Translate: \[p' = T \left(S \ p \right) = TS \ p \]

\[
TS = \begin{pmatrix}
1 & 0 & 3 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
2 & 0 & 3 \\
0 & 2 & 1 \\
0 & 0 & 1 \\
\end{pmatrix}
\]

Translate then Scale: \[p' = S \left(T \ p \right) = ST \ p \]

\[
ST = \begin{pmatrix}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 3 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
2 & 0 & 6 \\
0 & 2 & 2 \\
0 & 0 & 1 \\
\end{pmatrix}
\]

Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic & Perspective Projections
- Example: Iterated Function Systems (IFS)

Exercise!

Form teams of 2. Use 1 piece of paper. Put both names on the top. Work together. Both people should write. Hand in to TA Jeramey Tyler after we discuss.

Write down the 3x3 matrix that transforms this set of 4 points:

A: (0,0) B: (1,0) C: (1,1) D: (0,1)

A': (-1, 1) B': (-1, 0) C': (0,0) D': (0,1)

Show your work.

If you finish early...
Solve the problem using a different technique.

Orthographic vs. Perspective

- Orthographic
- Perspective
Simple Orthographic Projection

- Project all points along the z axis to the $z = 0$ plane

\[
\begin{pmatrix}
 x \\
y \\
0 \\
1
\end{pmatrix} = \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 1
\end{pmatrix} \begin{pmatrix}
 x \\
y \\
0 \\
1
\end{pmatrix}
\]

Simple Perspective Projection

- Project all points along the z axis to the $z = d$ plane, eye point at the origin:

\[
\begin{pmatrix}
 x' \\
y' \\
d \\
1
\end{pmatrix} = \begin{pmatrix}
 x \\
y \\
1 \\
0
\end{pmatrix}
\]

Alternate Perspective Projection

- Project all points along the z axis to the $z = 0$ plane, eye point at the $(0,0,-d)$:

\[
\begin{pmatrix}
 x' \\
y' \\
0 \\
1
\end{pmatrix} = \begin{pmatrix}
 x \\
y \\
0 \\
(z + d)/d
\end{pmatrix}
\]

In the limit, as $d \rightarrow \infty$

\[
\begin{pmatrix}
 x \\
y \\
0 \\
0
\end{pmatrix} \rightarrow \begin{pmatrix}
 x \\
y \\
0 \\
0
\end{pmatrix}
\]

...is simply an orthographic projection
Outline

• Course Overview
• Classes of Transformations
• Representing Transformations
• Combining Transformations
• Orthographic & Perspective Projections
• Example: Iterated Function Systems (IFS)

Iterated Function Systems (IFS)

• Capture self-similarity
• Contraction (reduce distances)
• An attractor is a fixed point

$A = \bigcap_{i=1}^{n} f_i(A)$

Example: Sierpinski Triangle

• Described by a set of n affine transformations
• In this case, $n = 3$
 - translate & scale by 0.5

Example: Sierpinski Triangle

for “lots” of random input points (x_0, y_0)
for $j=0$ to num_iters
 randomly pick one of the transformations
 $(x_{k+1}, y_{k+1}) = f_i(x_k, y_k)$
 display (x_k, y_k)

Increasing the number of iterations
Assignment 0: OpenGL Warmup

- Get familiar with:
 - C++ environment
 - OpenGL
 - Transformations
 - simple Vector & Matrix classes
- Have Fun!
- Due ASAP (start it today!)
- ¼ of the points of the other HWs (but you should still do it and submit it!)
For Next Time:

• Read Hugues Hoppe “Progressive Meshes” SIGGRAPH 1996
• Post a comment or question on the course WebCT/LMS discussion by 10am on Friday

Volunteer to be “Discussant”? Note: This is not a “presentation”. Be sure to read blurb (& linked webpage) on course webpage about Assigned Readings & Discussants.

Questions to think about:

• How do we represent meshes?
• How to automatically decide what parts of the mesh are important / worth preserving?
• Algorithm performance: memory, speed?
• What were the original target applications? Are those applications still valid? Are there other modern applications that can leverage this technique?