CSCI-4530/6530
Advanced Computer Graphics

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S17/

Barb Cutler
cutler@cs.rpi.edu
MRC 331A

Luxo Jr.

Topics for the Semester

* Meshes * Rendering
— representation — ray tracing, shadows
— simplification — appearance models
— subdivision surfaces — local vs. global
— construction/generation illumination

— volumetric modeling radiosity, photon

¢ Simulation mapping, subsurface

. scattering, etc.
— particle systems, cloth &

— rigid body, deformation * procedural modeling

_ wind/water flows * texture synthesis
 non-photorealistic

rendering

— collision detection

— weathering
e hardware & more ...

(a) Base mesh M” (150 faces)  (b) Mesh M'™ (500 faces) (¢) Mesh M (1,000 faces) (d) Original M=M" (13,546 faces)

Hoppe “Progressive Meshes” SIGGRAPH 1996




Mesh Generation & Volumetric Modeling

Cutler et al., “Simplification and Improvement of
Tetrahedral Models for Simulation” 2004

Modeling — Subdivision Surfaces

Hoppe et al., “Piecewise Smooth
Surface Reconstruction” 1994

Geri’s Game
Pixar 1997 o

Particle Systems

Star Trek: The Wrath of Khan 1982

Physical Simulation

* Rigid Body Dynamics

» Collision Detection
e Fracture

* Deformation

Miiller et al., “Stable Real-Time
Deformations” 2002




Fluid Dynamics Ray Casting/Tracing

* For every pixel
construct a ray from the eye

— For every object in the scene
* Find intersection with the ray “An Improved Illumination

Model for Shaded Display”
 Secondary rays

: Whitted 1980
“Visual Simulation of Smoke” had
Fedkiw, Stam & Jensen (S a OWS’ 5
SIGGRAPH 2001 reflection,
Foster & Mataxas, 1996 .
refraction)

* Keep the closest

* Shade (interaction of
light and material)

| I A 4
| 4

L\
L ¥

\

Appearance Models Subsurface Scattering

Wojciech Matusik - n n
Jensen et al., “A Practical
Model for Subsurface
\ Light Transport” 2001

Surface

Henrik Wann Jensen




Syllabus & Course Website

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S17/

* Which version should I register for?
— CSCI 6530 : 3 units of graduate credit
— CSCI 4530 : 4 units of undergraduate credit

(same lectures, assignments, quizzes, & grading criteria)

* This is an intensive course aimed at graduate students and
undergraduates interested in graphics research, involving
significant reading & programming each week. Taking this
course in a 5 course overload semester is discouraged.

Grades

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S17/

* This course counts as “communications intensive”
for undergraduates. As such, you must satisfactorily
complete all readings, presentations, project reports to
pass the course.

* As this is an elective (not required) course, I expect to
grade this course: “A”, “A-", “B+”, “B”, “B-", or “F”
— Don'’t expect C or D level work to “pass”

— I don’t want to give any “F’’s

Participation/Laptops in Class Policy

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S17/

» Lecture is intended to be discussion-intensive

* Laptops, tablet computers, smart phones, and
other internet-connected devices are not allowed
— Except during the discussion of the day's assigned

paper: students may use their laptop/tablet to view
an electronic version of the paper

— Other exceptions to this policy are negotiable; please
see the instructor in office hours

Questions?




Outline

* Course Overview

* Classes of Transformations

* Representing Transformations

* Combining Transformations

* Orthographic & Perspective Projections

» Example: Iterated Function Systems (IFS)

What is a Transformation?

* Maps points (x, y) in one coordinate system to
points (x’, ") in another coordinate system

x'=ax+by+c
y'=deteytf

* For example, Iterated Function System (IFS):

Simple Transformations

A
1
1
1

A

1

1

:
i

Isotropic

Identity Translation Rotation (Uniform)
Scaling

Yes, except scale = 0

Transformations are used to:

* Position objects in a scene

* Change the shape of objects

* Create multiple copies of objects
* Projection for virtual cameras

» Describe
animations

20




Rigid-Body / Euclidean Transforms

* Preserves distances
* Preserves angles

Rigid / Euclidean

Identity
Translation

Rotation

21

Similitudes / Similarity Transforms

* Preserves angles

Rigid / Euclidean

Identity

Translation Isotropic Scaling

Rotation

22

Linear Transformations

Scaling Reflection Shear

Similitudes

Linear

Rigid / Euclidean

Identity
Rotation

L(p +q) =Lp) + L(q)

Scaling

Isotropic Scaling Reflection

Shear

L(ap) = a L(p)

Affine Transformations

* preserves
parallel lines

Affine '

Similitudes

Linear

Rigid / Euclidean

Identity
Rotation

Scaling

Isotropic Scaling Reflection

Shear

24




Projective Transformations

* preserves lines

Projective
Affine

Similitudes

Linear

Rigid / Euclidean
Identity
Rotation

Perspective

Scaling

Isotropic Scaling Reflection

Shear

25

General (Free-Form) Transformation

* Does not preserve lines
* Not as pervasive, computationally more involved

Fig 1. Undeformed Plastic

Fig 2. Deformed Plastic

Sederberg and Parry, Siggraph 1986

26

Outline

* Course Overview

* Classes of Transformations

* Representing Transformations

» Combining Transformations

* Orthographic & Perspective Projections

« Example: Iterated Function Systems (IFS)

27

How are Transforms Represented?

x'=ax+by+c
yi=dxtey+f

MEMI4EH

p = Mp + ¢t

X

y

28




Homogeneous Coordinates

* Add an extra dimension
*in 2D, we use 3 x 3 matrices
* In 3D, we use 4 x 4 matrices

* Each point has an extra value, w

(x'\ a b ¢ d rx\
yi_|le f g h||y
z' i j k1 z
w' m n o p)|w
p' = Mp

29

Translation in homogeneous coordinates

x'=ax+ by tc
y'=deteytf

+C]
f

Affine formulation

MEV

Homogeneous formulation

X

Y

c
f
1

~ 2 =

30

Homogeneous Coordinates

* Most of the time w = 1, and we can ignore it

(x'\ a b ¢ d rx\
yil_|e f g hi|y
z' i j k1 z
| 0O 0 0 1 1

* If we multiply a homogeneous coordinate
by an affine matrix, w is unchanged

31

Homogeneous Visualization

* Divide by w to normalize (homogenize) P A
« W=0? Point at infinity (direction) /:/(

AN
i\
ERNN
A\
AN
AN
AN\
| \‘\W\

\‘ \\ l\'(/\\\
=
N

N\

1 ™

T LA\
LT
P11

0,0,1)=(0,0,2)=... ,y=1 N
(7,1, 1)=(14,2,2)= ... \\3
4,5,1)=(8,10,2)= ...

/7/;.'/ 1
o i
\J
)
i
A =
AT ]

32




Translate (%, #, t)

* Why bother with the
extra dimension?
Because now translations
can be encoded in the matrix!

Translate(c,0,0)

Scale(s,s,s)

Scale (sx, sy, sz)

y P'e
« Isotropic (uniform) ’ /
scaling: s.=s,=s: '
g

‘] (1 0 0 (x|
y' _ 01 O y
z' 0 0 1 z
1 0O 0 O 1
Rotation ZRotate(0)
» About z axis
rx'\ cos -sind 0 O rx\
y'| _|sin@ cos 0 0| |y
z' 0 0 1 0 z
1 0 0 0 1 1

35

( x' ) ss 0 0 O [ X ]
yi_10 s 0 0] |y
z' 0 0 s O z
1 0 0 0 1 1
Rotation Rotate(k, 6)

» About (k, &, k), a unit
vector on an arbitrary axis
(Rodrigues Formula)

~
J

X kk(1-c)+tc  kk(l-c)-kss kk(1-c)+ks

y'| | bkd(l-c)tks  kki(1-c)+tc  kk:(1-c)-kxs

2| | kk(I-c)-kes kekol-c)-ks  kko(I-c)+e
1] 0 0 0

where ¢c=cos0 & s=sinl

- o O O

36




Storage

* Often, w 1s not stored (always 1)

* Needs careful handling of direction vs. point
— Mathematically, the simplest is to encode directions
withw=0
— In terms of storage, using a 3-component array for
both direction and points is more efficient

— Which requires to have special operation routines for
points vs. directions

37

Outline

* Course Overview

* Classes of Transformations

* Representing Transformations

* Combining Transformations

* Orthographic & Perspective Projections

» Example: Iterated Function Systems (IFS)

38

How are transforms combined?

Scale then Translate

. . 53
| (L) Scale(2,2) | [ 2,2) Translate(3,1) ‘ 3,1). 63
(0,0) 0,0)

Use matrix multiplication: p' = T(Sp) = TSp

1 03 200 20 3
S = |0 1 1 020]=10 21
0 01 0 01 0 01

Caution: matrix multiplication is NOT commutative!
39

Non-commutative Composition

Scale then Translate: p' = T(Sp) = TSp
| ) Scale(2,2) | [(2,2) Translate(3,1) L,l). )
(0,0) (0,0)

Translate then Scale: p' = S(Tp) = STp

I -> I .> I (8:4)
wn Translate(3,1) s 4.2) Scale(2,2) (6,2).
(0,0)

40




Non-commutative Composition

Scale then Translate: p' = T(Sp) = TSp

1 03 200 20 3
IS = |0 1 1 020]=10 21
0 01 0 01 0 01

Translate then Scale: p' = S(Tp) = STp

200 1 03 200
ST =10 20 o1 /7(=1022
0 01 0 0 1 0 0 1

41

. I Form teams of 2. Use 1 piece of paper. Put both
EXCrCISG . names on the top. Work together. Both people should
write. Hand in to TA Jeramey Tyler after we discuss.

Write down the 3x3 matrix that transforms this set of 4 points:
A:(0,0) B: (1,0) C:(1,1) D: (0,1)

to these new positions:
A:(-1,1) B:(-1,0) C:(0,0) D’: (0, 1)

Show your work.

If you finish early ...
Solve the problem using a different technique.

Outline

* Course Overview

* Classes of Transformations

* Representing Transformations

» Combining Transformations

* Orthographic & Perspective Projections

» Example: Iterated Function Systems (IFS)

43

Orthographic vs. Perspective

* Orthographic

H_Eg;ﬁ

* Perspective

projector T~

44




Simple Orthographic Projection

* Project all points along the z axis to the z =0 plane

ffigﬂl+ )
1 1 0 0 0) [x]
v _|o 10 0]y
0 000 0]z
1 000 1)1

45

Simple Perspective Projection

* Project all points along the z axis to the z = d plane,
eyepoint at the origin:

X
By similar triangles: |
x’/x=d/z e xy2)
X’ = (x*d)/z 3

homogenize

N\

x*d/z x
y*d/z| _|
z
/

d

1 z

1
0
0
0

46

Alternate Perspective Projection

* Project all points along the z axis to the z = 0 plane,
eyepoint at the (0,0,-d):

By similar triangles:
x’/x = d/(z+d) o (xy.2)
X’ = (x*d)/(z+d)

homogenize /_\

x*d/(z+d) X I 0 0) |x
y*d/(z+d)| _ y 0 1 Y
0 0 0 0 0|z
1 (z+d)/d 0 0 l/d 1 14]

In the limit, as d — o

this perspective ...1s simply an
projection matrix... orthographic projection

1 0 0 0 1 0 0 0
01 0 0 01 0 0
0 0 0 0 - 0 0 0 0
0 0 1/d 1 0 0 0 1
L (xy,z)
‘t;;’;p'zp)

z=-d z%ﬂ z %




Outline

* Course Overview

* Classes of Transformations

* Representing Transformations

* Combining Transformations

* Orthographic & Perspective Projections

» Example: Iterated Function Systems (IFS)

49

Iterated Function Systems (IFS)

* Capture self-similarity

* Contraction
(reduce distances)

* An attractoris a
fixed point

50

Example: Sierpinski Triangle

* Described by a set of n affine transformations
* In this case, n =3
— translate & scale by 0.5

51

Example: Sierpinski Triangle

for “lots” of random input points (x;, y,)
for j=0 to num iters
randomly pick one of the transformations

(Eprr Yir) = £ (X w)

display (x., y,)

Increasing the number of iterations

52




Another IFS: The Dragon

3D IFS in OpenGL

53

54

Assignment 0: OpenGL Warmup

* Get familiar with:
— C++ environment
— OpenGL
— Transformations
— simple Vector &

Matrix classes
» Have Fun!
* Due ASAP (start it today!)

* Y4 of the points of the other HWs
(but you should still do it and submit it!)

55

L e——

Image by Henrik Wann Jensen

56




Volunteer to be “Discussant”?

For NeXt Time: Note: This is not a “presentation”.

Be sure to read blurb (& linked webpage) on course
webpage about Assigned Readings & Discussants.

* Read Hugues Hoppe “Progressive Meshes”
SIGGRAPH 1996

* Post a comment or question on the course
WebCT/LMS discussion by 10am on Friday

(a) Base mesh M (150 faces)  (b) Mesh M'™ (500 faces) (c) Mesh M (1,000 faces) (d) Original A/=M" (13,546 faces)

57

Questions to think about:

* How do we represent meshes?
* How to automatically decide what parts of the mesh
are important / worth preserving?
* Algorithm performance: memory, speed?
* What were the original target applications?
Are those applications still valid?
Are there other modern applications that
can leverage this technique?




