
Adjacency Data Structures

includes material from Justin Legakis

Last Time?
• Simple Transformations

• Classes of Transformations
• Representation

– homogeneous coordinates
• Composition

– not commutative
• Orthographic &

Perspective Projections

3

Assignment 0: OpenGL Warmup
• Get familiar with:

– C++ environment
– OpenGL
– Transformations
– simple Vector &

Matrix classes
– CMake

• Have Fun!
• Due ASAP…

Today
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures
• Mesh Simplification

Today
• Surface Definitions

– Well-Formed Surfaces
– Orientable Surfaces
– Computational Complexity

• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures
• Mesh Simplification

Well-Formed Surfaces
• Components Intersect "Properly"

– Any pair of Faces are: disjoint, share single Vertex,
or share 2 Vertices and the Edge joining them

– Every edge is incident to exactly 2 vertices
– Every edge is incident to exactly 2 faces

• Local Topology is "Proper"
– Neighborhood of a vertex is homeomorphic to a disk

(permits stretching and bending, but not tearing)
– Also called a 2-manifold
– If boundaries are allowed, points on the boundary

are homeomorphic to a half-disk, called a "manifold
with boundaries"

• Global Topology is "Proper"
– Connected, Closed, & Bounded

Orientable Surfaces?

from mathworld.wolfram.com

Closed Surfaces and Refraction
• Original Teapot model is not "watertight":

 intersecting surfaces at spout & handle, no bottom,
a hole at the spout tip, a gap between lid & base

• Requires repair before ray tracing with refraction

Henrik Wann Jensen

Computational Complexity
• Adjacent Element Access Time

– linear, constant time average case, or constant time?
– requires loops/recursion/if ?

• Memory
– variable size arrays or constant size?

• Maintenance
– ease of editing
– ensuring consistency

Questions?

Today
• Surface Definitions
• Simple Data Structures

– List of Polygons
– List of Edges
– List of Unique Vertices & Indexed Faces:
– Simple Adjacency Data Structure

• Fixed Storage Data Structures
• Fixed Computation Data Structures
• Mesh Simplification

List of Polygons:

(3,-2,5), (3,6,2), (-6,2,4)

(2,2,4), (0,-1,-2), (9,4,0), (4,2,9)

(1,2,-2), (8,8,7), (-4,-5,1)

(-8,2,7), (-2,3,9), (1,2,-7)

List of Edges:

(3,6,2), (-6,2,4)

(2,2,4), (0,-1,-2)

(9,4,0), (4,2,9)

(8,8,7), (-4,-5,1)

(-8,2,7), (1,2,-7)

(3,0,-3), (-7,4,-3)

(9,4,0), (4,2,9)

(3,6,2), (-6,2,4)

(-3,0,-4), (7,-3,-4)

List of Unique Vertices & Indexed Faces:

(-1, -1, -1)
(-1, -1, 1)
(-1, 1, -1)
(-1, 1, 1)
(1, -1, -1)
(1, -1, 1)
(1, 1, -1)
(1, 1, 1)

1 2 4 3
5 7 8 6
1 5 6 2
3 4 8 7
1 3 7 5
2 6 8 4

Vertices:

Faces:

Problems with Simple Data Structures

• No Adjacency Information
• Linear-time Searches

• Adjacency is implicit for structured meshes, but
what do we do for unstructured meshes?

Mesh Data
• So, in addition to:

– Geometric Information (position)
– Attribute Information (color, texture,

temperature, population density, etc.)
• Let’s store:

– Topological Information (adjacency, connectivity)

Simple Adjacency
• Each element (vertex, edge, and face) has a list of

pointers to all incident elements
• Queries depend only on local complexity of mesh
• Data structures do not have fixed size
• Slow! Big! Too much work to maintain!

Questions?

Today
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures

– Winged Edge (Baumgart, 1975)
• Fixed Computation Data Structures
• Mesh Simplification

Winged Edge (Baumgart, 1975)
• Each edge stores pointers

to 4 Adjacent Edges,
2 Face & 2 Vertex neighbors

• Vertices and Faces
have a single pointer
to one incident Edge

• Data Structure Size?

• How do we gather all faces
surrounding one vertex?

VERTEX

EDGE

FACE

•

•

•
Fixed

Messy, because there is no
consistent way to order pointers

Today
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures

– HalfEdge (Eastman, 1982)
– SplitEdge
– Corner
– QuadEdge (Guibas and Stolfi, 1985)
– FacetEdge (Dobkin and Laszlo, 1987)

HalfEdge (Eastman, 1982)
• Every edge is represented by two directed

HalfEdge structures
• Each HalfEdge stores:

– vertex at end of
directed edge

– symmetric half edge
– face to left of edge
– next points to the

HalfEdge counter-clockwise
around face on left

• Orientation is essential, but
can be done consistently!

HalfEdge (Eastman, 1982)
• Starting at a half edge, how do we find:

the other vertex of the edge?
the other face of the edge?
the clockwise edge around

the face at the left?
all the edges surrounding

the face at the left?
all the faces surrounding

the vertex?

HalfEdge (Eastman, 1982)
• Loop around a Face:
HalfEdgeMesh::FaceLoop(HalfEdge *HE) {
 HalfEdge *loop = HE;
 do {
 loop = loop->Next;
 } while (loop != HE);
}

• Loop around a Vertex:
HalfEdgeMesh::VertexLoop(HalfEdge *HE) {
 HalfEdge *loop = HE;
 do {
 loop = loop->Next->Sym;
 } while (loop != HE);
}

HalfEdge (Eastman, 1982)
• Data Structure Size?

• Data:

– geometric information stored at Vertices
– attribute information in Vertices, HalfEdges, and/or Faces
– topological information in HalfEdges only!

• Orientable surfaces only (no Mobius Strips!)
• Local consistency everywhere implies global

consistency
• Time Complexity?

•
Fixed

•
–
–
–

•
•

•

linear in the amount of information gathered

SplitEdge Data Structure:

• HalfEdge and SplitEdge are dual structures!
SplitEdgeMesh::FaceLoop() = HalfEdgeMesh::VertexLoop()

SplitEdgeMesh::VertexLoop() = HalfEdgeMesh::FaceLoop()

Corner Data Structure:
• The Corner data structure is its own dual!

Questions?

Today
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures

– HalfEdge (Eastman, 1982)
– SplitEdge
– Corner
– QuadEdge (Guibas and Stolfi, 1985)
– FacetEdge (Dobkin and Laszlo, 1987)

• Mesh Simplification

QuadEdge (Guibas and Stolfi, 1985)
• Consider the Mesh and its Dual simultaneously

– Vertices and Faces switch roles, we just re-label them
– Edges remain Edges

• Now there are eight ways
to look at each edge
– Four ways to look

at primal edge
– Four ways to look

at dual edge

QuadEdge (Guibas and Stolfi, 1985)
• Relations Between Edges: Edge Algebra
• Elements in Edge Algebra:

– Each of 8 ways to look at each edge

• Operators in
Edge Algebra:
– Rot: Bug rotates 90 degrees to its left

(switches to/from dual graph)
– Sym: Bug turns around 180 degrees
– Flip: Bug flips up-side down
– Onext: Bug rotates CCW to next edge with

same origin (either Vertex or Face)

QuadEdge (Guibas and Stolfi, 1985)
• Some Properties of Flip, Sym, Rot, and Onext:

– e Rot4 = e
– e Rot2 ≠ e
– e Flip2 = e
– e Flip Rot Flip Rot = e
– e Rot Flip Rot Flip = e
– e Rot Onext Rot Onext = e
– e Flip Onext Flip Onext = e
– e Flip-1 = e Flip
– e Sym = e Rot2
– e Rot-1 = e Rot3
– e Rot-1 = e Flip Rot Flip
– e Onext-1 = e Rot Onext Rot
– e Onext-1 = e Flip Onext Flip

QuadEdge (Guibas and Stolfi, 1985)
• Other Useful Definitions:

– e Lnext = e Rot-1 Onext Rot
– e Rnext = e Rot Onext Rot-1
– e Dnext = e Sym Onext Sym-1

– e Oprev = e Onext-1 = e Rot Onext Rot
– e Lprev = e Lnext-1 = e Onext Sym
– e Rprev = e Rnext-1 = e Sym Onext
– e Dprev = e Dnext-1 = e Rot-1 Onext Rot

• All of these functions can be
expressed as a constant number of
Rot, Sym, Flip, and Onext operations
independent of the local topology and
the global size and complexity of the mesh.

FacetEdge (Dobkin and Laszlo, 1987)
• QuadEdge (2D, surface) → FacetEdge (3D, volume)
• Faces → Polyhedra / Cells
• Edge → Polygon & Edge pair

Questions? Today
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures
• Mesh Simplification

Hugues Hoppe “Progressive Meshes” SIGGRAPH 1996

• Perform a sequence of 3 edge collapses, one-at-a-time
• Always collapse the shortest edge that does not result in

a zero area or “flipped”/upside-down triangle
• Replacement vertex should be at the midpoint of the edge

Pop Worksheet! Teams of 2. NOT THE SAME PERSON
YOU WORKED WITH LAST LECTURE!
Hand in to Jeramey after we discuss.

Progressive Meshes
• Mesh Simplification

– vertex split / edge collapse
– geometry & discrete/scalar attributes
– priority queue

• Level of Detail
– geomorphs

• Progressive Transmission
• Mesh Compression
• Selective Refinement

– view dependent

Selective Refinement Preserving Discontinuity Curves

• Remove a vertex & surrounding triangles,
re-triangulate the hole

• Merge Nearby Vertices
– will likely change

the topology…

Other Simplification Strategies

from Garland & Heckbert, “Surface Simplification
Using Quadric Error Metrics” SIGGRAPH 1997

When to Preserve Topology?

from Garland & Heckbert, “Surface Simplification
Using Quadric Error Metrics” SIGGRAPH 1997

Quadric Error Simplification
• Contract (merge) vertices vi and vj if:

– (vi, vj) is an edge, or
– || vi – vj || < t, where t is a threshold parameter

• Track cumulative error by summing 4x4 quadric
error matrices after each operation:

Garland & Heckbert,
“Surface Simplification

Using Quadric Error Metrics”
SIGGRAPH 1997

Judging Element Quality
• How “equilateral” are the elements?
• For Triangles?

– Ratio of shortest to longest edge
– Ratio of area to perimeter2

– Smallest angle
– Ratio of area to area of

smallest circumscribed circle

• For Tetrahedra?
– Ratio of volume2 to surface area3

– Smallest solid angle
– Ratio of volume to volume of

smallest circumscribed sphere

• "Teddy: A Sketching Interface for 3D Freeform
Design", Igarashi et al., SIGGRAPH 1999

• How do we represent objects that don’t have flat polygonal faces
& sharp corners? What are the right tools to design/construct
digital models of blobby, round, or soft things? What makes a
user interface intuitive, quick, and easy-to-use for beginners?

Reading for Tuesday (option A) Volunteer to be
“Discussant”?

• "Geometry Images", Gu, Gortler, & Hoppe,
SIGGRAPH 2002

• Can we leverage existing image formats and image compression
methods to store geometry? How do we take a complex 3D shape
an unroll/flatten/stretch it to a square image? File size? Quality?

Reading for Tuesday (option B) Volunteer to be
“Discussant”?

