Subdivision Surfaces

Questions on Homework?

• What's an illegal edge collapse?

• To be legal, the ring of vertex neighbors *must be unique* (have no duplicates)!

Today

- Spline Surfaces / Patches
 - Tensor Product
 - Bezier Patches
 - Trimming Curves
- Misc. Mesh/Surface Vocabulary
- "Subdivision Surfaces in Character Animation"
- "Piecewise Smooth Surface Reconstruction"
- Subdivision Surface "Zoo"
- Interpolating Subdivision

Tensor Product

• Of two vectors:

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \otimes \begin{bmatrix} b_1 & b_2 & b_3 & b_4 \end{bmatrix} = \begin{bmatrix} a_1b_1 & a_2b_1 & a_3b_1 \\ a_1b_2 & a_2b_2 & a_3b_2 \\ a_1b_3 & a_2b_3 & a_3b_3 \\ a_1b_4 & a_2b_4 & a_3b_4 \end{bmatrix}$$

• Similarly, we can define a surface as the tensor product of two curves....

Farin, Curves and Surfaces for Computer Aided Geometric Design

Bilinear Patch

Bi-lerp a (typically non-planar) quadrilateral

Notation: $\mathbf{L}(P_1, P_2, \alpha) \equiv (1 - \alpha)P_1 + \alpha P_2$

$$Q(s,t) = \mathbf{L}(\mathbf{L}(P_1, P_2, t), L(P_3, P_4, t), s)$$

Bilinear Patch

• Smooth version of quadrilateral with non-planar vertices...

- But will this help us model smooth surfaces?
- Do we have control of the derivative at the edges?

Modeling with Bicubic Bezier Patches

• Original Teapot specified with Bezier Patches

• But it's not "watertight": it has intersecting surfaces at spout & handle, no bottom, a hole at the spout tip, a gap between lid & base

Trimming Curves for Patches

Today

- Spline Surfaces / Patches
- Misc. Mesh/Surface Vocabulary
- "Subdivision Surfaces in Character Animation"
- "Piecewise Smooth Surface Reconstruction"
- Subdivision Surface "Zoo"
- Interpolating Subdivision

Misc. Mesh/Surface Vocabulary

• *Genus:* The maximum number of disjoint simple closed curves which can be cut from an orientable surface of genus g without disconnecting it is g.

Misc. Mesh/Surface Vocabulary

• Homeomorphic/Topological equivalence: a continuous stretching and bending of the object into a new shape

http://en.wikipedia.org/wiki/Image:Mug_and_Torus_morph.gif

Misc. Mesh/Surface Vocabulary

- Dihedral Angle:
 - the angle between the planes of two triangular faces
 - "looking down the edge" between two faces, the angle between the faces.

• *Valence* (a.k.a. degree): the number of edges incident to the vertex

Misc. Mesh/Surface Vocabulary

• *Warp & weft:* Yarns used in weaving. Because the weft does not have to be stretched in the way that the warp is, it can generally be less strong.

http://en.wikipedia.org/wiki/Weft

Misc. Mesh/Surface Vocabulary

- Extraordinary Vertex
 - Quad mesh: vertices w/ valence $\neq 4$
 - Hex mesh: vertices w/ valence $\neq 3$
 - Tri mesh: vertices w/ valence $\neq 6$

Misc. Mesh/Surface Vocabulary

- Extraordinary Vertex
 - Quad mesh: vertices w/ valence $\neq 4$
 - Hex mesh: vertices w/ valence $\neq 3$
 - Tri mesh: vertices w/ valence $\neq 6$

Today

- Spline Surfaces / Patches
- Misc. Mesh/Surface Vocabulary
- "Subdivision Surfaces in Character Animation"
- "Piecewise Smooth Surface Reconstruction"
- Subdivision Surface "Zoo"
- Interpolating Subdivision

Reading for Today

 DeRose, Kass, & Truong, "Subdivision Surfaces in Character Animation", SIGGRAPH 1998

Figure 5: Geri's hand as a piecewise smooth Catmull-Clark surface. Infinitely sharp creases are used between the skin and the finger nails

Subdivision Surfaces in Character Animation

- Catmull Clark Subdivision Rules
- Semi-sharp vs. Infinitely-sharp creases
- Mass-Spring Cloth (next week)
- Hierarchical Mesh for Collision
- Texturing Subdivision Surfaces

Figure 11: (a) A texture mapped regular pentagon comprised of 5 triangles; (b) the pentagonal model with its vertices moved; (c) A subdivision surface whose control mesh is the same 5 triangles in (a), and where boundary edges are marked as creases; (d) the subdivision surface with its vertices positioned as in (b)

Today

- Spline Surfaces / Patches
- Misc. Mesh/Surface Vocabulary
- "Subdivision Surfaces in Character Animation"
- "Piecewise Smooth Surface Reconstruction"
- Subdivision Surface "Zoo"
- Interpolating Subdivision

Reading for Today

• Hoppe et al., "Piecewise Smooth Surface Reconstruction" SIGGRAPH 1994

Piecewise Smooth Surface Reconstruction

- From input: scanned mesh points
 - Estimate topological type (genus)
 - Mesh optimization (a.k.a. simplification)
 - Smooth surface optimization

Piecewise Smooth Surface Reconstruction

- Crease subdivision masks *decouple* behavior of surface on either side of crease
- Crease rules cannot model a cone
- Optimization can be done locally
 - subdivision control points have only local influence
- Results
 - Noise?
 - Applicability?
 - Limitations?
 - Running Time

Piecewise Smooth Surface Reconstruction

Today

- Spline Surfaces / Patches
- Misc. Mesh/Surface Vocabulary
- "Subdivision Surfaces in Character Animation"
- "Piecewise Smooth Surface Reconstruction"
- Subdivision Surface "Zoo"
 - Doo Sabin (anything!)
 - Loop, Butterfly, $\sqrt{3}$ (triangles only)
 - Catmull Clark (turns everything into quads)
 - ... many others!
- Interpolating Subdivision

Loop Subdivision

Subdivision Rules. The masks for the Loop scheme are shown in Figure 4.3. For boundaries and edges tagged as crease edges, special rules are used. These rules produce a cubic spline curve along the boundary/crease. The curve only depends on control points on the boundary/crease.

Figure 4.3: Loop subdivision: in the picture above, β can be chosen to be either $\frac{1}{n}(5/8 - (\frac{3}{8} + \frac{1}{4}\cos\frac{2\pi}{n})^2)$ (original choice of Loop [16]), or, for n > 3, $\beta = \frac{3}{8n}$ as proposed by Warren [33]. For n = 3, $\beta = 3/16$ can be used.

SIGGRAPH 2000 course notes **Subdivision for Modeling and Animation (page 70)**

Catmull Clark Subdivision

where subscripts are taken modulo the valence of the central vertex v^0 . (The valence of a vertex is the number of edges incident to it.) Finally, a vertex point v1 is computed as

$$v^{j+1} = \frac{n-2}{n}v^j + \frac{1}{n^2}\sum_i e^i_j + \frac{1}{n^2}\sum_j f^{j+1}_j$$
 (2)

Vertices of valence 4 are called ordinary; others are called extraor-

Figure 3: Recursive subdivision of a topologically complicated mesh: (a) the control mesh; (b) after one subdivision step; (c) after two subdivision steps; (d) the limit surface.

Figure 4: The situation around a vertex v^0 of valence n.

"Subdivision Surfaces in Character Animation", DeRose, Kass & Truong, SIGGRAPH 1998

Adding creases to Loop Subdivision

- Vertex & edge masks
- Limit masks
 - Position
 - Tangent

(2) regular crease edge

(3) non-regular crease edge

Catmull-Clark Subdivision

(1) smooth edge

https://team.inria.fr/virtualplants/teaching/informatique-graphique-2016/tp4-instructions/

face

http://www.cl.cam.ac.uk/teaching/2005/AdvGraph/exercise2.html

Catmull-Clark preferred by Artists

- Catmull-Clark is based on quadrilaterals
 - Like NURBS, specifically cubic bsplines
 - Implicit adjacency in subdivided microgeometry
 - Better than triangles for symmetric objects

Pop Worksheet!

Teams of 2. SOMEONE YOU HAVEN'T MET BEFORE! Hand in to Jeramey after we discuss.

Sketch the polygonal mesh after performing 2 iterations of subdivision (Loop/Butterfly, Catmull-Clark, and Doo-Sabin). If necessary, pre-process the mesh to allow use of the specified method.

Today

- Spline Surfaces / Patches
- Misc. Mesh/Surface Vocabulary
- "Subdivision Surfaces in Character Animation"
- "Piecewise Smooth Surface Reconstruction"
- Subdivision Surface "Zoo"
- Interpolating Subdivision

Interpolation vs. Approximation Curves

• Interpolation Curve – over constrained → lots of (undesirable?) oscillations

• Approximation Curve – more reasonable?

Interpolating Subdivision

• Chaikin:

of the centroids of each edge/face

Interpolating Subdivision

- *Interpolation* vs. *Approximation* of control points
- Handle arbitrary topological type
- Reduce the "extraneous bumps & wiggles"

Figure 4: Interpolating a coarsely polygonized torus. Upper left: original mesh. Upper right: Shirman-Séquin interpolation[14]. Lower left: Interpolating Catmull-Clark surface. Lower right: Faired interpolating Catmull-Clark surface.

"Efficient, fair interpolation using Catmull-Clark surfaces", Halstead, Kass & DeRose, SIGGRAPH 1993

Interpolation of Catmull-Clark Surfaces

• Solve for a new control mesh (generally "bigger") such that when Catmull-Clark subdivision is applied it interpolates the original control mesh

Vertex Position in Limit

 V_n stores the center vertex & surrounding edge & face vertices as a big column vector

$$V_n^{i+1} = \mathbf{S}_n V_n^i$$

$$\mathbf{S_4} = \frac{1}{16} * \begin{pmatrix} 9 & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 6 & 6 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 6 & 1 & 6 & 1 & 0 & 1 & 1 & 0 & 0 \\ 6 & 0 & 1 & 6 & 1 & 0 & 1 & 1 & 0 \\ 6 & 1 & 0 & 1 & 6 & 0 & 0 & 1 & 1 \\ 4 & 4 & 4 & 0 & 0 & 4 & 0 & 0 & 0 \\ 4 & 0 & 4 & 4 & 0 & 0 & 4 & 0 & 0 \\ 4 & 0 & 0 & 4 & 4 & 0 & 0 & 4 & 0 \\ 4 & 4 & 0 & 0 & 4 & 0 & 0 & 0 & 4 \end{pmatrix}$$

$$V_n^{\infty} := \lim_{i \to \infty} \mathbf{S}_n^i V_n^1$$

Solve for New Positions

- Goal: Find the control mesh vertex positions,
 x (a column vector of 3D points), such that the position of the vertices in the limit match the input vertices,
 b (also a column vector of points)
- Use Least Squares to solve

$$\mathbf{A}x = \mathbf{b}$$

where A is a square matrix with the interpolation rules and connectivity of the mesh

• See paper for extension to match limit normals

Fairing

- Fairing: an additional part or structure added to an aircraft, tractor-trailer, etc. to smooth the outline and thus reduce drag
- Subdivide initial resolution twice so that all constrained vertex positions are independent

Figure 5: Top row: Original mesh, Interpolating mesh, Faired interpolating mesh. Bottom row: Corresponding Catmull-Clark surfaces. Interpolation introduces wiggles which are removed by fairing.

Reading for Tuesday: (pick one)

• "OBB-Tree: A Hierarchical Structure for Rapid Interference Detection", Gottschalk, Lin, Manocha, SIGGRAPH 1996.

 "Painting and Rendering Textures on Unparameterized Models", DeBry, Gibbs, Deleon, and Robins, SIGGRAPH 2002

Post a comment/question on the LMS discussion by 10am