

Loop Subdivision

Shirley, Fundamentals of Computer Graphics

Homework 1:

- Questions/Comments?

Loop Subdivision

Subdivision Rules. The masks for the Loop scheme are shown in Figure 4.3. For boundaries and edges tagged as crease edges, special rules are used. These rules produce a cubic spline curve along the boundary/crease. The curve only depends on control points on the boundary/crease.

Figure 4.3: Loop subdivision: in the picture above, β can be chosen to be either $\frac{1}{n}\left(5 / 8-\left(\frac{3}{8}+\frac{1}{4} \cos \frac{2 \pi}{n}\right)^{2}\right)$ (original choice of Loop [16]), or, for $n>3, \beta=\frac{3}{8 n}$ as proposed by Warren [33]. For $n=3, \beta=3 / 16$ can be used.

SIGGRAPH 2000 course notes
Subdivision for Modeling and Animation (page 70)

Last Time?

- Spline Surfaces
- complex topology is challenging, requires trimming curves
- Subdivision Zoo
- Doo-Sabin
- Loop
- Catmull-Clark

Implicit Surfaces

- For a sphere:
$\mathrm{H}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-\mathrm{r}^{2}$
- If $\mathrm{H}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$, on surface
- If $\mathrm{H}(\mathrm{x}, \mathrm{y}, \mathrm{z})>0$, outside surface
- If $\mathrm{H}(\mathrm{x}, \mathrm{y}, \mathrm{z})<0$, inside surface

Today

- Implicit Surfaces, Voxels, \& Marching Cubes
- Collision Detection
- Conservative Bounding Region
- Spatial Acceleration Data Structures
- Fixed Grid
- Nested Grid
- Octree
- Binary Space Partition
- K-d tree
- Bounding Volume Hierarchy
- Papers for Friday

"Marching Tetrahedra"

Jules Bloomenthal
"An implicit surface polygonizer" Graphics Gems IV

"When the Blobs Go
Marching Two by Two",
Jeff Lander, Gamasutra

Today

- Implicit Surfaces, Voxels, \& Marching Cubes
- Collision Detection
- Conservative Bounding Region
- Spatial Acceleration Data Structures
- Fixed Grid
- Nested Grid
- Octree
- Binary Space Partition
- K-d tree
- Bounding Volume Hierarchy
- Papers for Friday

Collisions

- Detection
- Response
- Overshooting problem (when we enter the solid)

Detecting Collisions

- Easy with implicit equations of surfaces
- $\mathrm{H}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ at surface
- $\mathrm{H}(\mathrm{x}, \mathrm{y}, \mathrm{z})<0$ inside surface
- So just compute H and you know that you're inside if it's negative
- More complex with other surface definitions

Collision Detection for Solids

- How to detect collision between 2 polyhedra?
- Need an inside/outside test
- Test if a vertex is inside the other polyhedron
- But treat also edge-edge intersection

Cost of Detection?

Questions?

- Test each edge with each face?
$\mathrm{O}\left(\mathrm{N}^{2}\right)$
- How would you detect collision between two bunnies?
$-\mathrm{O}\left(\mathrm{N}^{2}\right)$ is too
expensive!
- Let's use a spatial data structure

Conservative Bounding Region

- First check for an intersection with a conservative bounding region
- Spatial Acceleration Data Structures
- Fixed Grid
- Nested Grid
- Octree
- Binary Space Partition
- K-d tree
- Bounding Volume Hierarchy
- Papers for Friday

Conservative Bounding Regions

- tight \rightarrow avoid false positives
- fast to intersect
- easy/fast/perfect construction (less important)

arbitrary convex region (bounding half-spaces)

Overlap test

- Overlap between two axis-aligned boxes?
- Check if the intervals along the 3 dimensions overlap
- Overlap test between two spheres?
$-\mathrm{D}\left(\right.$ center $_{1}$, center $\left._{2}\right)<\mathrm{r}_{1}+\mathrm{r}_{2}$

General Collision Detection

Questions?

- Put a hierarchy around your objects
- Use the fast overlap test recursively
- Handle exact case at the leaves (when necessary)
- More difficult for self-collision (e.g. cloth)
- Because there is more overlap

Today

- Implicit Surfaces, Voxels, \& Marching Cubes
- Collision Detection
- Conservative Bounding Region
- Spatial Acceleration Data Structures
- Fixed/Uniform/Regular Grid
- Nested Grid
- Octree
- Binary Space Partition
- K-d tree
- Bounding Volume Hierarchy
- Papers for Friday

Fixed/Uniform/Regular Grid

- Separate geometry into regions
- Reduces pairwise comparisons
- Primitives that overlap multiple cells?
Insert into multiple cells
 (use pointers)

Fixed/Uniform Grid Discussion

- Advantages?
- easy to construct
- easy to traverse
- Disadvantages?
- may be only sparsely filled
- geometry may still be clumped

Today

- Implicit Surfaces, Voxels, \& Marching Cubes
- Collision Detection
- Conservative Bounding Region
- Spatial Acceleration Data Structures
- Fixed/Uniform/Regular Grid
- Nested Grid
- Octree
- Binary Space Partition
- K-d tree
- Bounding Volume Hierarchy
- Papers for Friday

Adaptive Grids

- Subdivide until each cell contains no more than n elements, or maximum depth d is reached

Nested Grids

Octree/(Quadtree)

Primitives in an Adaptive Grid

- Can live at intermediate levels, or be pushed to lowest level of grid
- Quadtree/Octree: split every dimension in half, always axis aligned
- kd-tree: choose one dimension (often the largest dimension) and split it axis aligned (but not necessarily at the midpoint)
- Binary Space Partition (BSP): choose an arbitrary cut plane
- Which one is best? It depends.... Often they are all equally good!

kd tree

Octree/(Quadtree)

Adaptive Grid Discussion

- Advantages?
- grid complexity matches geometric density
- Disadvantages?
- more expensive to traverse (binary tree, lots of pointers)

Today

- Implicit Surfaces, Voxels, \& Marching Cubes
- Collision Detection
- Conservative Bounding Region
- Spatial Acceleration Data Structures
- Fixed Grid
- Nested Grid
- Octree
- Binary Space Partition
- K-d tree
- Bounding Volume Hierarchy
- Papers for Friday

Early k-d tree paper

-"Multidimensional Binary Search Trees
Used for Associative Searching", Bentley,
Communications of the ACM, 1975

Bounding Volume Hierarchy

- Find bounding box of objects
- Split objects into two groups
- Recurse

Bounding Volume Hierarchy

- Find bounding box of objects
- Split objects into two groups
- Recurse

Intersection with BVH

- Check sub-volume with closer intersection first

Where to split objects?

- At midpoint OR
- Sort, and put half of the objects on each side OR
- Use modeling hierarchy

Bounding Volume Hierarchy Discussion

- Advantages
- easy to construct
- easy to traverse
- binary
- Disadvantages
- may be difficult to choose a good split for a node
- poor split may result in minimal spatial pruning

Reading for Today:

- Oriented Bounding Box (OBB): generalization of the (axis-aligned) BVH

OBB-Tree: A Hierarchical Structure for Rapid Interference Detection, Gottschalk, Lin, \& Manocha, SIGGRAPH 1996.

- "I-COLLIDE: An Interactive and Exact Collision Detection System for Large-scaled Environments", Cohen, Lin, Manocha, \& Ponamgi, I3D 1995.

Questions?

- "Octree Textures", Benson \& Davis, SIGGRAPH 2002

- "Painting and Rendering Textures on Unparameterized Models", DeBry, Gibbs, Deleon, and Robins, SIGGRAPH 2002

Today

- Implicit Surfaces, Voxels, \& Marching Cubes
- Collision Detection
- Conservative Bounding Region
- Spatial Acceleration Data Structures
- Fixed Grid
- Nested Grid
- Octree
- Binary Space Partition
- K-d tree
- Bounding Volume Hierarchy
- Papers for Friday
- "Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior", Provot, 1995.

Simple mass-spring system

Post a comment/question on the LMS discussion by 10am

Cloth in Practice (w/ Animation)

OPTIONAL READING FOR FRIDAY

- Baraff, Witkin \& Kass Untangling Cloth SIGGRAPH 2003

- Efficient numerical treatment (stability)

Pop Worksheet! Teans of Hand into Jeramey after we discuss.
 ss.

- For each adaptive grid method
(quad tree, k-d tree, binary space partition) sketch the resulting grid if we split cells with > 2 elements and allow a maximum tree height of 5 (max of 4 splits from root).

