Implicit Surfaces, Collision Detection, & Volumetric Data Structures

Loop Subdivision

Subdivision Rules. The masks for the Loop scheme are shown in Figure 4.3. For boundaries and edges tagged as *crease* edges, special rules are used. These rules produce a cubic spline curve along the boundary/crease. The curve only depends on control points on the boundary/crease.

Figure 4.3: Loop subdivision: in the picture above, β can be chosen to be either $\frac{1}{n}(5/8-(\frac{3}{8}+\frac{1}{4}\cos(\frac{3\pi}{n})^2))$ (original choice of Loop [16]), or, for n > 3, $\beta = \frac{3}{8n}$ as proposed by Warren [33]. For n = 3, $\beta = 3/16$ can be used.

SIGGRAPH 2000 course notes Subdivision for Modeling and Animation (page 70)

- Implicit Surfaces, Voxels, & Marching Cubes
- Collision Detection
- Conservative Bounding Region
- Spatial Acceleration Data Structures
 - Fixed Grid
 - Nested Grid
 - Octree
 - Binary Space Partition
 - K-d tree
 - Bounding Volume Hierarchy
- Papers for Friday

- Implicit Surfaces, Voxels, & Marching Cubes
- Collision Detection
- Conservative Bounding Region
- Spatial Acceleration Data Structures
 - Fixed Grid
 - Nested Grid
 - Octree
 - Binary Space Partition
 - K-d tree
 - Bounding Volume Hierarchy
- Papers for Friday

Detecting Collisions

- Easy with implicit equations of surfaces
- H(x,y,z)=0 at surface
- H(x,y,z)<0 inside surface
- So just compute H and you know that you're inside if it's negative
- More complex with other surface definitions

Collisions

- Detection
- Response
- Overshooting problem (when we enter the solid)

Collision Detection for Solids

- How to detect collision between 2 polyhedra?
- Need an inside/outside test
- Test if a vertex is inside the other polyhedron
- But treat also edge-edge intersection

Cost of Detection?

- Test each edge with each face? $O(N^2)$
- How would you detect collision between two bunnies?
 - $-O(N^2)$ is too expensive!
 - Let's use a spatial data structure

Questions?

Today

- Implicit Surfaces, Voxels, & Marching Cubes
- Collision Detection
- Conservative Bounding Region
- Spatial Acceleration Data Structures
 - Fixed Grid
 - Nested Grid
 - Octree
 - Binary Space Partition
 - K-d tree
 - Bounding Volume Hierarchy
- Papers for Friday

General Collision Detection

- Put a hierarchy around your objects
- Use the fast overlap test recursively
- Handle exact case at the leaves (when necessary)
- More difficult for self-collision (e.g. cloth)
 - Because there is more overlap

Overlap test

- Overlap between two axis-aligned boxes?
 Check if the intervals along the 3 dimensions overlap
- Overlap test between two spheres?
 - $D(center_1, center_2) < r_1 + r_2$

- Implicit Surfaces, Voxels, & Marching Cubes
- Collision Detection
- Conservative Bounding Region
- Spatial Acceleration Data Structures
 - Fixed/Uniform/Regular Grid
 - Nested Grid
 - Octree
 - Binary Space Partition
 - K-d tree
 - Bounding Volume Hierarchy
- Papers for Friday

Fixed/Uniform/Regular Grid

- Separate geometry into regions
- Reduces pairwise comparisons
- Primitives that overlap multiple cells?

For Each Cell Along a Ray

- Does the cell contain an intersection?
- Yes: return closest intersection
- No: continue to march along ray

Fixed/Uniform Grid Discussion

- Advantages?
 - easy to construct
 - easy to traverse
- Disadvantages?
 - may be only sparsely filled
 - geometry may still be clumped

- Implicit Surfaces, Voxels, & Marching Cubes
- Collision Detection
- Conservative Bounding Region
- Spatial Acceleration Data Structures
 - Fixed/Uniform/Regular Grid
 - Nested Grid
 - Octree
 - Binary Space Partition
 - K-d tree
 - Bounding Volume Hierarchy
- Papers for Friday

Adaptive Grids

• Subdivide until each cell contains no more than *n* elements, or maximum depth *d* is reached

Variations of Adaptive Grids

- When to split? When a cell contains "lots" of geometry, but has not yet reached the max tree depth
- Where to split?
 - Quadtree/Octree: split every dimension in half, always axis aligned
 - kd-tree: choose *one* dimension (often the largest dimension) and split it axis aligned (but not necessarily at the midpoint)
 - Binary Space Partition (BSP): choose an *arbitrary* cut plane
- Which one is best? It depends.... Often they are all equally good!

Primitives in an Adaptive Grid

• Can live at intermediate levels, or be pushed to lowest level of grid

Adaptive Grid Discussion

- Advantages?
 - grid complexity matches geometric density
- Disadvantages?
 - more expensive to traverse (binary tree, lots of pointers)

Today

- Implicit Surfaces, Voxels, & Marching Cubes
- Collision Detection
- Conservative Bounding Region
- Spatial Acceleration Data Structures
 - Fixed Grid
 - Nested Grid
 - Octree
 - Binary Space Partition
 - K-d tree
 - Bounding Volume Hierarchy
- Papers for Friday

Early k-d tree paper

• "Multidimensional Binary Search Trees Used for Associative Searching", Bentley, Communications of the ACM, 1975

Bounding Volume Hierarchy

- Find bounding box of objects
- Split objects into two groups
- Recurse

Bounding Volume Hierarchy

- Find bounding box of objects
- Split objects into two groups
- Recurse

Intersection with BVH

• Check sub-volume with closer intersection first

Where to split objects?

- At midpoint OR
- Sort, and put half of the objects on each side OR
- Use modeling hierarchy

Bounding Volume Hierarchy Discussion

- Advantages
 - easy to construct
 - easy to traverse
 - binary
- Disadvantages
 - may be difficult to choose a good split for a node
 - poor split may result in minimal spatial pruning

Reading for Today:

• Oriented Bounding Box (OBB): generalization of the (axis-aligned) BVH

• "I-COLLIDE: An Interactive and Exact Collision Detection System for Large-scaled Environments", Cohen, Lin, Manocha, & Ponamgi, I3D 1995.

- Implicit Surfaces, Voxels, & Marching Cubes
- Collision Detection
- Conservative Bounding Region
- Spatial Acceleration Data Structures
 - Fixed Grid
 - Nested Grid
 - Octree
 - Binary Space Partition
 - K-d tree
 - Bounding Volume Hierarchy
- Papers for Friday

Reading for Friday: Everyone should read this (simple cloth model used in HW2)

• "Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior", Provot, 1995.

Simple mass-spring system

Improved solution

Post a comment/question on the LMS discussion by 10am

Cloth Collision

- A cloth has many points of contact
- Often stays in contact
- Requires
 - Efficient collision detection
 - Efficient numerical treatment (stability)

OPTIONAL READING FOR FRIDAY

Robert Bridson, Ronald Fedkiw & John Anderson Robust Treatment of Collisions, Contact and Friction for Cloth Animation

SIGGRAPH 2002

Reduced Deformation

- Collisions are expensive
- Deformation is expensive
- This is a lot of geometry!
- Simplify the simulation model

SIGGRAPH 2004

OPTIONAL READING FOR FRIDAY

Doug L. James & Dinesh K. Pai BD-Tree: Output-Sensitive Collision

Detection for Reduced Deformable Models

Pop Worksheet!

Teams of 2. Hand in to Jeramey after we discuss.

• For each adaptive grid method (quad tree, k-d tree, binary space partition) sketch the resulting grid if we split cells with > 2 elements and allow a maximum tree height of 5 (max of 4 splits from root).

