

HW2: Cloth & Fluid Simulation

Questions?

At each Timestep:

- Identify which cells are Empty, Full, or on the Surface
- Compute new velocities
- Adjust the velocities to maintain an incompressible flow
- Move the particles
 - Interpolate the velocities at the faces
- Render the geometry and repeat!

Adjusting the Velocities

• Calculate the *divergence* of the cell (the extra in/out flow)

 $u_{i-1/2,j,k}$

- The divergence is used to update the *pressure* within the cell
- Adjust each face velocity uniformly to bring the divergence to zero
- Iterate across the entire grid until divergence is < ε

e cell dz dz $v_{ij:1/2,k}$ dy dx dx j k i

At each Timestep:

- Identify which cells are Empty, Full, or on the Surface
- Compute new velocities
- Adjust the velocities to maintain an incompressible flow
- Move the particles
 - Interpolate the velocities at the faces
- Render the geometry and repeat!

Correct Velocity Interpolation

• NOTE: The complete implementation isn't particularly elegant... Storing velocities at face midpoints (req'd for conservation of mass) makes the index math messy!

 No interpolation (just use the left/bottom face velocity)
 N

 Note the discontinuities in velocity at cell boundaries
 J

Correct Interpolation Note that the velocity perpendicular to the outer box is zero

Buggy Interpolation Note the clumping particles, and the discontinuities at some of the cell borders

Optional Reading for Today

• Cem Yuksel, Donald H. House, and John Keyser, "Wave Particles", SIGGRAPH 2007

Today

- Rigid Body Dynamics
- Collision Response
- Non-Rigid Objects
- Finite Element Method
- Deformation
- Level-of-Detail

Optional Reading for Today

"Coupling Water and Smoke to Thin Deformable and Rigid Shells", Guendelman, Selle, Losasso, & Fedkiw, SIGGRAPH 2005.

Rigid Body Dynamics • How do we simulate this object's motion over time? • We could discretize the object into many particles... - But a rigid body does not deform - Only a few degrees of freedom • Instead, we use v(t) only one particle at the center of mass Net Torque - Body has velocity $f_3(t)$ and angular velocity - Compute net force & net torque Net Force

Nice Reference Material: http://www.pixar.com/companyinfo/research/pbm2001/

Degree of Freedom (DOF)

• Rotations:

Collision Response

- tangential velocity v_t unchanged
- normal velocity v_n reflects:

 $v = v_t + v_n$

 $v \leftarrow v_t - \mathcal{E}v_n$

- coefficient of restitution
 - 1 for elastic
 - 0 for plastic
- change of velocity = $-(1+\epsilon)v$
- change of momentum $Impulse = -m(1+\epsilon)v$

Collisions

- Detection
- Response
- Overshooting problem (when we enter the solid)

Collisions - Overshooting Usually, we detect collision when it's too late: we're already inside Solutions: back up Compute intersection point Compute response there Advance for remaining fractional time step Other solution: Quick and dirty fixup Just project back to object closest point

Energy & Rigid Body Collisions Collision Between Two Objects body B • Total Energy = • Suppose a vertex on body A 12 16 Kinetic Energy + is colliding into an edge of body A potential energy rotational energy translational energy Potential Energy + pre-collision momentum x: -1.707 y: -0.898 angular: -10.643 body B at point P. Define post-collision momentum x: -1.707 y: -0.898 angular: -10.643 **Rotational Energy** the following variables: • Total Energy stays vectors involved in collision constant if there is no $m_{\rm a}, m_{\rm b} = {\rm mass} {\rm of bodies A, B}$ $\bar{\mathbf{r}}_{ap}$ = distance vector from center of mass of body A to point P damping and no friction $\bar{\mathbf{r}}_{bp}$ = distance vector from center of mass of body B to point P ω_{a1}, ω_{b1} = initial pre-collision angular velocity of bodies A, B • Rotational Energy ω_{a2}, ω_{b2} = final post-collision angular velocity of bodies A, B is constant between $\overline{\mathbf{v}}_{a1}, \overline{\mathbf{v}}_{b1}$ = initial pre-collision velocities of center of mass bodies A, B $\overline{\mathbf{v}}_{a2}, \overline{\mathbf{v}}_{b2}$ = final post-collision velocities of center of mass bodies A, B collisions $\overline{\mathbf{v}}_{ap1}$ = initial pre-collision velocity of impact point on body A $\overline{\mathbf{v}}_{bp1}$ = initial pre-collision velocity of impact point on body B http://www.myphysicslab.com/collis \mathbf{n} = normal (perpendicular) vector to edge of body B e = elasticity (0 = inelastic, 1 = perfectly elastic)ion.html http://www.myphysicslab.com/collision.html

Advanced Collisions

- What about Friction?
- What if the contact between two objects is not a single point?
- What if more than two objects collide simultaneously?

Rigid Body Dynamics

- Physics
 - Velocity
 - Acceleration
 - Angular
 Momentum
- Collisions
- Friction

trom: Darren Lewis http://www-cs-students.stanford.edu/~dalewis/cs448a/rigidbody.html

Today

- Rigid Body Dynamics
- Collision Response
- Non-Rigid Objects
- Finite Element Method
- Deformation
- Level-of-Detail

Simulation of Non-Rigid Objects

- We modeled string & cloth using mass-spring systems. Can we do the same?
- Yes...
- But a more physically accurate model uses *volumetric elements:*

Today

- Rigid Body Dynamics
- Collision Response
- Non-Rigid Objects
- Finite Element Method
- Deformation
- Level-of-Detail

Finite Element Method

- To solve the continuous problem (deformation of all points of the object)
 - Discretize the problem
 - Express the interrelationship
 - Solve a big linear system
- More principled than Mass-Spring

Multi-Resolution Deformation

- Use Voronoi diagrams to match parent & child vertices.
- Interpolate values for inactive interface vertices from active parent/child vertices

• Need to avoid interference of vibrations between simulations at different resolutions

Debunne et al. "Dynamic Real-Time Deformations using Space & Time Adaptive Sampling", 2001

Pre-computation & Simulation

- FEM matrix pre-computed
- Level of detail coupling pre-computed for rest topology
- What to do if connectivity of elements changes?
 - Cloth is cut or torn
 - Surgery simulation

Reading for Tuesday: (pick one)

• James O'Brien & Jessica Hodgins "Graphical Modeling and Animation of Brittle Fracture" SIGGRAPH 1999.

- Fracture threshhold
- Material properties

• Remeshing

- Parameter tuning
- need connectivity info!

al properties eter tuning

