Fracture & Tetrahedral Models

What are the horizontal and face velocities after 1, 2, and many iterations of divergence adjustment for an incompressible fluid?

Pop Worksheet!

Teams of 2. Hand in to Jeramey after we discuss.

Last Time?
- Rigid Body
- Collision Response
- Finite Element Method
 - Stress/Strain
- Deformation
 - Level of Detail

Today
- Continuing from Last Time...
 - Collision Response
 - Non-Rigid Objects
 - Finite Element Method
- Useful & Related Term Definitions
- “Graphical Modeling and Animation of Brittle Fracture”
- “Dynamic Real-Time Deformations using Space & Time Adaptive Sampling”
 - Level-of-Detail
Advanced Collisions

• What about Friction?
• Rolling objects?
• What if the contact between two objects is not a single point?
• What if more than two objects collide simultaneously?

Rigid Body Dynamics

• Physics
 – Velocity
 – Acceleration
 – Angular Momentum

• Collisions
• Friction

from: Darren Lewis
http://www-cs-students.stanford.edu/~dalewis/cs448a/rigidbody.html

Collisions

• We know how to simulate bouncing really well
• But resting collisions are harder to manage

Today

• Continuing from Last Time...
 – Collision Response
 – Non-Rigid Objects
 – Finite Element Method
• Useful & Related Term Definitions
• “Graphical Modeling and Animation of Brittle Fracture”
• “Dynamic Real-Time Deformations using Space & Time Adaptive Sampling”
 – Level-of-Detail
Simulation of Non-Rigid Objects

- We modeled string & cloth using mass-spring systems. Can we do the same?
- Yes…
- But a more physically accurate model uses *volumetric elements*:

![Image from O’Brien et al. 1999](http://en.wikipedia.org/wiki/Image:Stress_tensor.png)

Strain & Stress

- **Stress**
 - the internal distribution of forces within a body that balance and react to the loads applied to it
 - *normal stress & shear stress*

- **Strain**
 - material deformation caused by stress.
 - measured by the change in length of a line or by the change in angle between two lines

![Diagram from Debunne et al. 2001](http://en.wikipedia.org/wiki/Image:Stress_tensor.png)

Finite Element Method

- To solve the continuous problem (deformation of all points of the object)
 - Discretize the problem
 - Express the interrelationship
 - Solve a big linear system
- More principled than Mass-Spring

![Diagram from Debunne et al. 2001](http://en.wikipedia.org/wiki/Image:Stress_tensor.png)

Today

- Continuing from Last Time...
 - Collision Response
 - Non-Rigid Objects
 - Finite Element Method
- Useful & Related Term Definitions
- “Graphical Modeling and Animation of Brittle Fracture”
- “Dynamic Real-Time Deformations using Space & Time Adaptive Sampling”
 - Level-of-Detail
Misc. Definitions

- **Isotropic**: is a property which does not depend on the direction.
- **Anisotropic**: is a property which is directionally dependent.

Misc. Definitions

- **Elastic Deformation**: Once the forces are no longer applied, the object returns to its original shape.
- **Plastic Deformation**: An object in the plastic deformation range will first have undergone elastic deformation, which is reversible, so the object will return part way to its original shape.

Misc. Definitions

- **Degenerate/Ill-conditioned Element**: a.k.a. how “equilateral” are the elements?
 - Ratio of volume^2 to surface area^3
 - Smallest *solid* angle
 - Ratio of volume to volume of smallest circumscribed sphere

Misc. Definitions

- **Tension**: The direction of the force of tension is parallel to the string, away from the object exerting the stretching force.
- **Compression**: resulting in reduction of volume
Implicit Surfaces

- For a sphere:
 \[H(x,y,z) = x^2 + y^2 + z^2 - r^2 \]
- If \(H(x,y,z) = 0 \), on surface
- If \(H(x,y,z) > 0 \), outside surface
- If \(H(x,y,z) < 0 \), inside surface

Convex vs. Non-Convex

Questions?

Today

- Continuing from Last Time...
 - Collision Response
 - Non-Rigid Objects
 - Finite Element Method
- Useful & Related Term Definitions
- “Graphical Modeling and Animation of Brittle Fracture”
- “Dynamic Real-Time Deformations using Space & Time Adaptive Sampling”
 - Level-of-Detail
Reading for Today:

- Fracture threshold
- Remeshing
 - need connectivity info!
- Material properties
- Parameter tuning

Fracture Opening Modes

Figure 6: Three loading modes that can be experienced by a crack. Mode I: Opening, Mode II: In-Plane Shear, and Mode III: Out-of-Plane Shear. Adapted from Anderson [1].

Local Mesh Refinement

Images from O’Brien et al. 1999

Managing Fracture Adjacency
Fracture Propagation Difficulties

• Need to track direction of fracture propagation?

• Need to track crack tip?

Controlling Speed of Propagation

Today

• Continuing from Last Time...
 – Collision Response
 – Non-Rigid Objects
 – Finite Element Method

• Useful & Related Term Definitions
 • “Graphical Modeling and Animation of Brittle Fracture”
 • “Dynamic Real-Time Deformations using Space & Time Adaptive Sampling”

Level of Detail

Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, & Alan H. Barr
Dynamic Real-Time Deformations using Space & Time Adaptive Sampling
SIGGRAPH 2001

• Interactive shape deformation
• Use high-resolution model only in areas of extreme deformation

(no remeshing)
Multi-Resolution Deformation

- Use Voronoi diagrams to match parent & child vertices.
- Interpolate values for inactive interface vertices from active parent/child vertices.

Need to avoid interference of vibrations between simulations at different resolutions

Pre-computation & Simulation

- FEM matrix pre-computed
- Level of detail coupling pre-computed for rest topology
- What to do if connectivity of elements changes?
 - Cloth is cut or torn
 - Surgery simulation

Multiple Materials

Mueller, Dorsey, McMillan, Jagnow, & Cutler

Stable Real-Time Deformations

Symposium on Computer Animation 2002

Tree Stump

Images from Cutler et al. 2002
Haptic Device

- “3D mouse” + force feedback
- 6 DOF (position & orientation)
- requires 1000 Hz refresh
 (visual only requires ~30 Hz)

3D Mesh Simplification

- 1,050K tetras (133K faces)
- 10K tetras (3K faces)

Sensible’s Phantom
http://www.sensible.com/
3D Mesh Operations

- Tetrahedral Swaps
 - Choose the configuration with the best local element shape
- Edge Collapse
- Vertex Smoothing
- Vertex Addition

Prioritizing Edge Collapses

- Preserve topology
 - Thin layers should not pinch together
- Collapse weight
 - Edge length + boundary error
- No negative volumes
- Local element quality does not significantly worsen

3D Mesh Operations

- Tetrahedral Swaps
- Edge Collapse
 - Delete a vertex & the elements around the edge
- Vertex Smoothing
- Vertex Addition

3D Mesh Operations

- Tetrahedral Swaps
- Edge Collapse
 - Move a vertex to the centroid of its neighbors
 - Convex or concave, but avoid negative-volume elements
- Vertex Addition
3D Mesh Operations

- Tetrahedral Swaps
- Edge Collapse
- Vertex Smoothing
- Vertex Addition
 - At the center of a tetra, face, or edge
 - Useful when mesh is simplified, but needs further element shape improvement

Visualization of Tetrahedra Quality

Octree or Adaptive Distance Field (ADF)

1,050K tetras
(133K faces)

good angle, but small-volume
diff good

461K tetras
(108K faces)

zero-angle & zero-volume
near-equilateral & ideal-volume

good angle, but small-volume

good angle, but small-volume

After Simplification & Mesh Improvement

10K tetras
(3K faces)
Visualization of Simplification Algorithm

Reading for Friday

• “Real-Time Hand-Tracking with a Color Glove”
 SIGGRAPH 2009,
 Wang & Popović

Reading for Friday

“Synthesis of Complex Dynamic Character Motion from Simple Animation”,
Liu & Popović, 2002

• Rapid prototyping of realistic character motion
 from rough low-quality animations
• Obey the laws of physics & stay within space
 of naturally-occurring movements