Animation, Motion Capture, & Inverse Kinematics

Handing Free Surface with MAC

- Divergence in surface cells:
 - Is divided equally amongst neighboring empty cells
 - Or other similar strategies?
- Zero out the divergence & pressure in empty cells

Today: How do we Animate?

- Keyframing
- Procedural Animation
- · Physically-Based Animation
- Motion Capture
- Skeletal Animation
- · Forward and Inverse Kinematics

Keyframing

- Use spline curves to automate the in betweening
 - Good control
 - Less tedious than drawing every frame
- Creating a good animation still requires considerable skill and talent

Procedural Animation

- Describes the motion algorithmically, as a function of small number of parameters
- Example: a clock with second, minute and hour hands
 - express the clock motions in terms of a "seconds" variable
 - the clock is animated by varying the seconds parameter
- Example: A bouncing ball
 - Abs(sin($\omega t + \theta_0$))*e^{-kt}

Physically-Based Animation

 Assign physical properties to objects (masses, forces, inertial properties)

Simulate physics by solving equations

• Used for *secondary motions* (hair, cloth, scattering, splashes, breaking, smoke, etc.) that respond to primary *user controlled* animation

"Sampling Plausible Solutions to Multi-body Constraint Problems" Chenney & Forsyth, SIGGRAPH 2000

Motion Capture

- Optical markers, high-speed cameras, triangulation
 → 3D position
- Captures style, subtle nuances and realism at high-resolution
- You must observe someone do something
- Difficult (or impossible?) to edit mo-cap data

Reading for Today:

 "Real-Time Hand-Tracking with a Color Glove" SIGGRAPH 2009, Wang & Popović

Today: How do we Animate?

- Keyframing
- · Procedural Animation
- · Physically-Based Animation
- Motion Capture
- Skeletal Animation
- Forward and Inverse Kinematics

Articulated Models

- Articulated models:
 - rigid parts
 - connected by joints
- They can be animated by specifying the joint angles as functions of time.

Skeleton Hierarchy

• Each bone transformation described relative to the parent in the hierarchy:

 $X_h, Y_h, Z_h, q_h, f_h, s_h$

Skeletal Animation Challenges

• Skinning

- Complex deformable skin, muscle, skin motion

• Hierarchical controls

- Smile control, eye blinking, etc.
- Keyframes for these higher-level controls
- A huge amount of time is spent building the 3D models, its skeleton, and its controls

Maya tutorial

Forward Kinematics

 Given skeleton parameters p, and the position of the effecter in local coordinates V₁, what is the position of the effector in the world coordinates V_w?

$$x_h, y_h, z_h, q_h, f_h, s_h$$

$$q, f_t, s_t$$

$$q$$

$$q_r, f_f$$

$$v_i$$

$$\begin{aligned} \mathbf{V}_{\mathbf{w}} &= \mathbf{T}(\mathbf{x}_{\mathbf{h}}, \mathbf{y}_{\mathbf{h}}, \mathbf{z}_{\mathbf{h}}) \mathbf{R}(\mathbf{q}_{\mathbf{h}}, \mathbf{f}_{\mathbf{h}}, \mathbf{s}_{\mathbf{h}}) \mathbf{T}_{\mathbf{h}} \mathbf{R}(\mathbf{q}_{\mathbf{t}}, \mathbf{f}_{\mathbf{t}}, \mathbf{s}_{\mathbf{t}}) \mathbf{T}_{\mathbf{t}} \mathbf{R}(\mathbf{q}_{\mathbf{c}}) \mathbf{T}_{\mathbf{c}} \mathbf{R}(\mathbf{q}_{\mathbf{p}}, \mathbf{f}_{\mathbf{f}}) \mathbf{V}_{\mathbf{l}} \\ \mathbf{V}_{\mathbf{w}} &= \mathbf{S}(\mathbf{p}) \mathbf{V}_{\mathbf{l}} \\ S(p) \text{ is "just" a 4x4 affine transformation matrix!} \end{aligned}$$

Inverse Kinematics (IK)

- Given the position of the effecter in local coordinates V₁ and the desired position V_{w} in world coordinates, what are the skeleton parameters p?
- Much harder requires solving the inverse of the non-linear function:

find p such that $S(p)V_1 = V_{w}$

Why is this hard? Why is it non-linear?

Under-/Over- Constrained IK

Hugo Elias, http://freespace.virgin.net/hugo.elias/models/m ik.htm

Searching Configuration Space

- Use gradient descent to walk from starting configuration to target
- Angle restrictions & collisions can introduce local minima

"The good-looking textured light-sourced bouncy fun smart and stretchy page" Hugo Elias, http://freespace.virgin.net/hugo.elias/models/m ik2.htm

IK Challenge

- Find a "natural" skeleton configuration for a given collection of pose constraints
- A vector constraint function C(p) = 0 collects all pose constraints
- A scalar objective function g(p) measures the quality of a pose, g(p) is minimum for most natural poses. Example g(p):
 - deviation from natural pose
 - joint stiffness
 - power consumption

Force: Newton (N) = $kg * m / s^2$

n Work: Joule (J) = $N*m = kg * m^2 / s^2$ Power: Watt (W) = $J/s = kg * m^2 / s^3$

Questions?

Figure 8: Spacetime constraints: a cartoonist's view. (c) 1988 by Laura Green, used by permission.

"Spacetime Constraints", Witkin & Kass, SIGGRAPH 1988

Reading for Today:

"Synthesis of Complex Dynamic Character Motion from Simple Animation", Liu & Popović, 2002

- Rapid prototyping of realistic character motion from rough low-quality animations
- Obey the laws of physics & stay within space of naturally-occurring movements

What's a Natural Pose?

- Training database of ~50 "natural poses"
- For each, compute center of mass of:
 - Upper body
 - Arms
 - Lower body
- The relative COM of each generated pose is matched to most the most similar database example

Liu & Popović

Linear and Angular Momentum

• In unconstrained animation (no contacts), both linear & angular momentum should be conserved

• The center of mass should follow a parabolic trajectory according to gravity

• The joints should move such that the angular momentum of the whole body remains constant

During Constrained Motion

• During *constrained* motion (when in contact with the ground), the angular momentum follows a spline curve modeled after biomechanics data

System Features

- Automatically detect point/line/plane constraints
- Divide animation into constrained portions (e.g., feet in contact with ground) and unconstrained portions (e.g., free flight)
- Linear and angular momentum constraints without having to compute muscle forces
- Minimize:
 - Mass displacement
 - Velocity of the degrees of freedom (DOF)
 - "Unbalance" (distance the COM is outside of ground constraints)

Readings for Friday 2/24: (pick one)

"Artist-Directed Dynamics for 2D Animation", Bai, Kaufman, Liu, & Popović, SIGGRAPH 2016

Figure 6: Keyframes used in the articulated character walk example. The artist only specifies keyframes for a subset of handles (handles at hands and feet) which are shown as blue dots. Nine keyframes are used to create a walking cycle. Their timing is visualized by the black lines at the bottom. The artworks are adapted from Angryanimaton.com (http://www.angryanimator.com)

Readings for Friday 2/24: (pick one)

"Articulated Swimming Creatures" Jie Tan, Yuting Gu, Greg Turk, and C. Karen Liu, SIGGRAPH 2011

Figure 8: A five-link eel swims in a 2D fluid environment. In contrast to the simulation in 3D, an eel swimming in 2D fluid sheds only one single vortex street. Red traces show the counter-clockwise vortices while blue traces show the clockwise vortices.

http://www.cc.gatech.edu/~jtan34/project/articulatedSwimmingCreatures.html

Readings for Friday 2/24: (pick one)

"Flexible Muscle-Based Locomotion for Bipedal Creatures", Geijtenbeek, van de Panne, van der Stappen, SIGGRAPH Asia 2013

Figure 1: Physics-based simulation of locomotion for a variety of creatures driven by 3D muscle-based control. The synthesized controllers can locomote in real time at a range of speeds, be steered to a target heading, and can traverse variable terrain.