Ray Tracing

Last Time?
• Keyframing
• Procedural Animation
• Physically-Based Animation
• Forward and Inverse Kinematics
• Motion Capture

Reading for Today

“Artist-Directed Dynamics for 2D Animation”, Bai, Kaufman, Liu, & Popović, SIGGRAPH 2016

Reading for Today

“Articulated Swimming Creatures” Jie Tan, Yuting Gu, Greg Turk, and C. Karen Liu, SIGGRAPH 2011

Figure 6: Keyframes used in the articulated character walk example. The artist only specifies keyframes for a subset of handles (handles at hands and feet) which are shown as blue dots. Nine keyframes are used to create a walking cycle. Their timing is visualized by the black lines at the bottom. The artworks are adapted from Angryanimator.com (http://www.angryanimator.com/)

Figure 8: A five-link eel swims in a 2D fluid environment. In contrast to the simulation in 3D, an eel swimming in 2D fluid sheds only one single vortex street. Red traces show the counter-clockwise vortices while blue traces show the clockwise vortices.
http://www.cc.gatech.edu/~jtan34/project/articulatedSwimmingCreatures.html
Reading for Today

“Flexible Muscle-Based Locomotion for Bipedal Creatures”, Geijtenbeek, van de Panne, van der Stappen, SIGGRAPH Asia 2013

Figure 1: Physics-based simulation of locomotion for a variety of creatures driven by 3D muscle-based control. The synthesized controllers can locomote in real time at a range of speeds, be steered to a target heading, and can traverse variable terrain.

Today

• Ray Casting
 – Ray-Plane Intersection
 – Ray-Sphere Intersection
 – Point in Polygon

• Ray Tracing
• Recursive Ray Tracing
• Distribution Ray Tracing

Durer’s Ray Casting Machine

• Albrecht Durer, 16th century

Ray Casting

For every pixel
 Construct a ray from the eye
For every object in the scene
 Find intersection with the ray
 Keep if closest
Shade depending on light and normal vector

Finding the intersection and normal is the central part of ray casting.
A Note on *Local* Shading

- **Surface/Scene Characteristics:**
 - surface normal
 - direction to light
 - viewpoint
- **Material Properties:**
 - color/texture
 - diffuse (matte)
 - specular (shiny)
 - ...
- More later!

Ray Representation?

- Two vectors:
 - Origin
 - Direction (normalized is better)
- Parametric line (*explicit* representation)
 - \(P(t) = \text{origin} + t \times \text{direction} \)

3D Plane Representation?

- Plane defined by
 - \(P_o = (x,y,z) \)
 - \(n = (A,B,C) \)
- *Implicit* plane equation
 - \(H(P) = Ax+By+Cz+D = 0 \)
 - \(n \cdot P + D = 0 \)
- Point-Plane distance?
 - If \(n \) is normalized,
 - distance to plane, \(d = H(P) \)
 - \(d \) is the *signed distance*!

Explicit vs. Implicit?

- Ray equation is explicit \(P(t) = R_o + t \times R_d \)
 - Parametric
 - Generates points
 - Harder to verify that a point is on the ray
- Plane equation is implicit \(H(P) = n \cdot P + D = 0 \)
 - Solution of an equation
 - Does not generate points
 - Verifies that a point is on the plane
Ray-Plane Intersection

- Intersection means both are satisfied
- So, insert explicit equation of ray into implicit equation of plane & solve for t

\[P(t) = R_o + t \cdot R_d \]

\[H(P) = n \cdot P + D = 0 \]

\[n \cdot (R_o + t \cdot R_d) + D = 0 \]

\[t = -\frac{(D + n \cdot R_o)}{n \cdot R_d} \]

Additional Housekeeping

- Verify that intersection is closer than previous
 \[P(t) < t_{current} \]
- Verify that it is not out of range (behind eye)
 \[P(t) > t_{\min} \]

Normal at Surface Intersection

- Needed for shading
 - diffuse: dot product between light and normal
- Normal of a plane is constant!

Ray-Triangle Intersection

- Intersect with the plane…
- Then use barycentric coordinates:
 \[P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c \]
 with \(\alpha + \beta + \gamma = 1 \)
 - If \(0 < \alpha < 1 \) & \(0 < \beta < 1 \) & \(0 < \gamma < 1 \)
 then the point is inside the triangle!
How Do We Compute α, β, γ?

- Ratio of opposite sub-triangle area to total area
 - $\alpha = \frac{A_a}{A}$
 - $\beta = \frac{A_b}{A}$
 - $\gamma = \frac{A_c}{A}$
- Use signed areas for points outside the triangle

![Diagram showing computation of α, β, γ](image)

But how do I know if the point is outside the triangle? That's what I was trying to determine!

Using Cramer’s Rule…

- Used to solve for one variable at a time in system of equations

$$\begin{vmatrix} a_x - R_{ox} & a_x - c_x & R_{dx} \\ a_y - R_{oy} & a_y - c_y & R_{dy} \\ a_z - R_{oz} & a_z - c_z & R_{dz} \end{vmatrix} = \frac{1}{|A|} \begin{vmatrix} a_x - b_x & a_x - R_{ox} & R_{dx} \\ a_y - b_y & a_y - R_{oy} & R_{dy} \\ a_z - b_z & a_z - R_{oz} & R_{dz} \end{vmatrix}$$

Where $|A|$ denotes the determinant and can be copied mechanically into code.

Sphere Representation?

- Implicit sphere equation
 - Assume centered at origin (easy to translate)
 - $H(P) = P \cdot P - r^2 = 0$

![Diagram showing sphere representation](image)

Ray-Sphere Intersection

- Insert explicit equation of ray into implicit equation of sphere & solve for t

$$P(t) = R_o + tR_d$$
$$H(P) = P \cdot P - r^2 = 0$$

$$(R_o + tR_d) \cdot (R_o + tR_d) - r^2 = 0$$

$$R_d \cdot R_d t^2 + 2R_d \cdot R_o t + R_o \cdot R_o - r^2 = 0$$
Ray-Sphere Intersection

- Quadratic: \(at^2 + bt + c = 0 \)
 - \(a = 1 \) (remember, \(||R_d|| = 1 \))
 - \(b = 2R_d \cdot R_o \)
 - \(c = R_o \cdot R_o - r^2 \)
- with discriminant \(d = \sqrt{b^2 - 4ac} \)
- and solutions \(t_{\pm} = \frac{-b \pm d}{2a} \)
- What does it mean if there are no solutions, 1 solution, or 2 solutions?

Questions?

Reading for Next Friday

Today

- Ray Casting
 - Ray Tracing
 - Shadows
 - Reflection
 - Refraction
 - Recursive Ray Tracing
- Distribution Ray Tracing
How Can We Add Shadows?

Find the point to be shaded
For every light,
 Construct ray from point to light
 For every object
 find intersection of ray with object
 If no objects between point and light
 Add contribution from light

Mirror Reflection

• Cast ray symmetric with respect to the normal
• Multiply by reflection coefficient (color)

Reflection

• Reflection angle = view angle
• \[\mathbf{R} = \mathbf{V} - 2 (\mathbf{V} \cdot \mathbf{N}) \mathbf{N} \]

Transparency

• Cast ray in refracted direction
• Multiply by transparency coefficient (color)
Qualitative Refraction

From “Color and Light in Nature” by Lynch and Livingston

Refraction

\[\begin{align*}
I &= N \cos \theta_i - M \sin \theta_i \\
M &= (N \cos \theta_i - I) / \sin \theta_i \\
T &= -N \cos \theta_T + M \sin \theta_T \\
&= -N \cos \theta_T + (N \cos \theta_i - I) \sin \theta_T / \sin \theta_i \\
&= -N \cos \theta_T + (N \cos \theta_i - I) \eta_r \\
&= \left[\eta_r \cos \theta_i - \cos \theta_T \right] N - \eta_r I \\
&= \left[\eta_r \cos \theta_i - \sqrt{(1 - \sin^2 \theta_T)} \right] N - \eta_r I \\
&= \left[\eta_r \cos \theta_i - \sqrt{(1 - \eta_r^2 (1 - \cos^2 \theta_i))} \right] N - \eta_r I \\
&= \left[\eta_r (N \cdot I) - \sqrt{(1 - \eta_r^2 (1 - (N \cdot I)^2))} \right] N - \eta_r I
\end{align*} \]

Snell-Descartes Law:

\[\eta_i \sin \theta_i = \eta_T \sin \theta_T \]

\[\sin \theta_T = \frac{\eta_i}{\eta_T} = \frac{\eta_i}{\eta_r} \]

Total Internal Reflection

From “Color and Light in Nature” by Lynch and Livingston

Refraction & the Sidedness of Objects

- Make sure you know whether you’re entering or leaving the transmissive material:

- What about intersecting transparent objects?

Total Internal Reflection

Fig. 3.3A: The optical muzzle. From underwater, the entire celestial hemisphere is compressed into a circle only 0.23° across. The dark boundary defining the edges of the muzzle is not sharp due to surface waves. The rays are analogous to the crosshair type seen in a hazy air. Section 1.8 (Photo by E. Granger)

Fig. 3.3B: The optical muzzle. Light from the horizon (angle of incidence = 80°) is refracted downward at an angle of 48.6°. This compresses the sky into a circle with a diameter of 97.2° instead of its usual 180°.
Ray Tracing

- Intersect all objects
- For every light:
 - cast shadow ray
 - color += local shading term
- If mirror:
 - color += color_{refl} * trace reflected ray
- If transparent:
 - color += color_{trans} * trace transmitted ray

- Does it ever end?

Stopping criteria:
- Recursion depth
 - Stop after a number of bounces
- Ray contribution
 - Stop if reflected / transmitted contribution becomes too small

The Ray Tree

N_i surface normal
R_i reflected ray
L_i shadow ray
T_i transmitted (refracted) ray

Complexity?
Ray Debugging

- Visualize the ray tree for single image pixel

Other Reading for Next Friday

Today

- Ray Casting
- Ray Tracing
- Recursive Ray Tracing
- Distribution Ray Tracing
 - Soft shadows
 - Antialiasing (getting rid of jaggies)
 - Glossy reflection
 - Motion blur
 - Depth of field (focus)

Shadows

- one shadow ray per intersection per point light source
Shadows & Light Sources

Soft Shadows

- multiple shadow rays to sample area light source

Antialiasing – Supersampling

- multiple rays per pixel

Reflection

- one reflection ray per intersection

http://www.davidfay.com/index.php

http://www.pa.uky.edu/~sciworks/light/preview/bulb2.htm

http://www.davidfay.com/index.php
Glossy Reflection
- multiple reflection rays

Motion Blur
- Sample objects temporally

Depth of Field
- multiple rays per pixel

Ray Tracing Algorithm Analysis
- Ray casting
- Lots of primitives
- Recursive
- Distributed Ray Tracing Effects
 - Soft shadows
 - Anti-aliasing
 - Glossy reflection
 - Motion blur
 - Depth of field

 $\text{cost} \approx \text{height} \times \text{width} \times \text{num primitives} \times \text{intersection cost} \times \text{size of recursive ray tree} \times \text{num shadow rays} \times \text{num supersamples} \times \text{num glossy rays} \times \text{num temporal samples} \times \text{num focal samples} \ldots$

 can we reduce this?

 these can serve double duty

Rob Cook

Justin Legakis