Monte Carlo Ray Tracing & Irradiance Caching & Photon Mapping

Announcements: Quiz

- On Friday (3/10), in class
- One 8.5x11 sheet of notes allowed
- Sample quiz (from a previous year) on website
- Focus on "reading comprehension" and material for Homeworks 0, 1, & 2

Announcements: Final Projects

- Everyone should post two ideas for a final project on LMS ("due" Monday 3/20 @ 11:59pm)
- Connect with potential teammates (teams of 2 strongly recommended)
- Start finding & reading background papers
- Proposal & summary of background research are due April 3rd
- See webpage for details on brainstorming post, proposal, and overall project requirements

Reading for Today

• "The Rendering Equation", Kajiya, SIGGRAPH 1986

Reading for Today

"Implicit Visibility and Antiradiance for Interactive

Global Illumination"
Dachsbacher,
Stamminger,
Drettakis, and
Durand
Siggraph 2007

Reading for Today

"Fast and Accurate Hierarchical Radiosity Using Global Visibility" Durand, Drettakis, & Puech 1999

Today

- Ray Casting vs. Ray Tracing vs.
 Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Ray Grammar
- Monte-Carlo Integration
- Importance Sampling

Ray Tracing vs. Path Tracing

- 2 bounces
- 5 glossy samples
- 5 shadow samples

How many rays cast per pixel?

- 1 main ray + 5 shadow rays +
- 5 glossy rays + 5x5 shadow rays +
- 5*5 glossy rays + 5x5x5 shadow rays
- = 186 rays

How many 3 bounce paths can we trace per pixel for the same cost?

186 rays / 8 ray casts per path = \sim 23 paths

Which will probably have less error?

Questions?

10 paths/pixel

100 paths/pixel

Images from Henrik Wann Jensen

Today

- Ray Casting vs. Ray Tracing vs.
 Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Ray Grammar
- Monte-Carlo Integration
- Importance Sampling

Path Tracing is costly

• Needs tons of rays per pixel

Irradiance Cache

- Interpolate nearby cached values
- But do full calculation for direct lighting

Irradiance Cache

Henrik Wann Jensen

Questions?

- Why do we need "good" random numbers?
 - With a fixed random sequence, we see the structure in the error

Today

- Ray Casting vs. Ray Tracing vs. Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Ray Grammar
- Monte-Carlo Integration
- Importance Sampling

Photon Mapping

- Preprocess: cast rays from light sources
 - independent of viewpoint

Photon Mapping

- Store photons
 - position + light power + incoming direction

Storing the Photon Map

- Efficiently store photons for fast access
- Use hierarchical spatial structure (kd-tree)

Rendering with Photon Map

- Cast primary rays
- For secondary rays: reconstruct irradiance using k closest photons
 Combine with irradiance caching and other techniques

Photon Map Results

HW3: Photons in the k-d tree

- You start with query point & radius (red)
- You give the KDTree::CollectPhotonsInBox function a bounding box (yellow)
- The algorithm finds all k-d tree cells that overlap with bounding box (blue)
- The function returns all photons in those cells
- You need to discard all photons not in your original query radius

Readings for Tuesday after break:

• "Rendering Caustics on Non-Lambertian Surfaces", Henrik Wann Jensen, *Graphics Interface* 1996.

• "Global Illumination using Photon Maps", Henrik Wann Jensen, *Rendering Techniques* 1996.

Today

- Ray Casting vs. Ray Tracing vs.
 Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Ray Grammar
- Monte-Carlo Integration
- Importance Sampling

Ray Grammar

• Classify local interaction:

E = eye

L = light

S = perfect specular reflection or refraction

G = glossy scattering

D = diffuse scattering

From Dutre et al.'s slides

Questions?

Today

- Ray Casting vs. Ray Tracing vs.
 Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Ray Grammar
- Monte-Carlo Integration
 - Probabilities and Variance
 - Analysis of Monte-Carlo Integration
- Importance Sampling

Monte-Carlo Computation of π

- Take a random point (x,y) in unit square
- Test if it is inside the ½ disc
 - $\text{ Is } x^2 + y^2 < 1?$
- Probability of being inside disc?
 - area of ¼ unit circle / area of unit square = π /4

- $\pi \approx 4$ * number inside disc / total number
- The error depends on the number or trials

Use MC to calculate Form Factor

- Cast *n* rays between the two patches
 - Compute visibility (what fraction of rays do not hit an occluder)

ch posed

Convergence & Error

- Let's compute 0.5 by flipping a coin:
 - 1 flip: 0 or 1
 - \rightarrow average error = 0.5
 - -2 flips: 0, 0.5, 0.5 or 1
 - \rightarrow average error = 0. 25
 - 4 flips: 0 (*1),0.25 (*4), 0.5 (*6), 0.75(*4), 1(*1)
 - \rightarrow average error = 0.1875
- Unfortunately, doubling the number of samples does not double accuracy

Review of (Discrete) Probability

- Random variable can take discrete values x_i
- Probability p_i for each x_i

$$0 < p_i < 1, \sum p_i = 1$$

- Expected value $E(x) = \sum_{i=1}^{n} p_i x_i$
- Expected value of function of random variable
 - $f(x_i)$ is also a random variable

$$E[f(x)] = \sum_{i=1}^{n} p_i f(x_i)$$

Variance & Standard Deviation

- Variance σ^2 : deviation from expected value
- Expected value of square difference

$$\sigma^2 = E[(x - E[x])^2] = \sum_i (x_i - E[x])^2 p_i$$

• Also

$$\sigma^2 = E[x^2] - (E[x])^2$$

• Standard deviation σ : square root of variance (notion of error, RMS)

Monte Carlo Integration

- Turn integral into finite sum
- Use *n* random samples
- As *n* increases...
 - Expected value remains the same
 - Variance decreases by n
 - Standard deviation (error) decreases by $\frac{1}{\sqrt{n}}$
- Thus, converges with $\frac{1}{\sqrt{n}}$

Advantages of MC Integration

- Few restrictions on the integrand
 - Doesn't need to be continuous, smooth, ...
 - Only need to be able to evaluate at a point
- Extends to high-dimensional problems
 - Same convergence
- Conceptually straightforward
- Efficient for solving at just a few points

Disadvantages of MC Integration

- Noisy
- Slow convergence
- Good implementation is hard
 - Debugging code
 - Debugging math
 - Choosing appropriate techniques
- Punctual technique, no notion of smoothness of function (e.g., between neighboring pixels)

Today

- Ray Casting vs. Ray Tracing vs.
 Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Ray Grammar
- Monte-Carlo Integration
- Importance Sampling
 - Stratified Sampling
 - Importance Sampling

Domains of Integration

- Pixel, lens (Euclidean 2D domain)
- Time (1D)
- Hemisphere: Work needed to ensure *uniform* probability

Example: Light Source

- We can integrate over surface or over angle
- But we must be careful to get probabilities and integration measure right!

Sampling the source uniformly

Sampling the hemisphere uniformly

Stratified Sampling

- With uniform sampling, we can get unlucky
 - E.g. all samples in a corner
- To prevent it, subdivide domain Ω into non-overlapping regions Ω_i
 - Each region is called a stratum
- Take one random samples per $\Omega_{_{i}}$

Importance Sampling

$$\langle I \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)}$$

Slide from Henrik Wann Jensen

- Choose p wisely to reduce variance
 - Want to use a p that resembles f
 - Does not change convergence rate (still sqrt)
 - But decreases the constant

Bidirectional Path Tracing

• "A Theoretical Framework for Physically Based Rendering", Lafortune and Willems, Computer Graphics Forum, 1994.

Figure B: An indirectly illuminated scene rendered using path tracing and bidirectional path tracing respectively. The latter method results in visibly less noisefor the same amount of work.

Questions?

Naïve sampling strategy

Optimal sampling strategy

Veach & Guibas "Optimally Combining Sampling Techniques for Monte Carlo Rendering" SIGGRAPH 95