The Traditional
Graphics Pipeline

@l 7
“Oh, lovely — just the hundredth time you’ve managed to cut
everyone’s head off.”

Last Time?

* Participating Media

* Measuring BRDFs

3D Digitizing & Scattering
BSSRDFs

— Monte Carlo Simulation

— Dipole Approximation

N

I
&

&

N\ 1y
A

Reading for Today

“A Practical Model for Subsurface Light Transport”,
Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001

Reading for Today

Old Method New Method Photo

Figure 12: A comparison of Kajiya and Kay’s model (left) under a single point source, our proposed model (center) with the same lighting,
and the hair from the photograph in Figure 11 (removed from context to simplify the comparison). The Kajiya model’s diffuse term results in
a flat appearance, while the secondary highlight in our model correctly captures the colored shading of the real hair.

"Light Scattering from Human Hair Fibers"
Marschner et al., SIGGRAPH 2003

Today

» Ray Casting / Tracing vs. Scan Conversion
* Traditional Graphics Pipeline
* Clipping

» Rasterization/Scan Conversion

Ray Casting / Tracing

» Advantages?
— Smooth variation of normal, exact silhouettes

— Generality: can render anything that can be
intersected with a ray

— Atomic operation, allows recursion
* Disadvantages?
— Time complexity (N objects, R pixels)
— Usually too slow for interactive applications

— Hard to implement in hardware (lacks computation
coherence, must fit entire scene in memory)

How Do We Render Interactively?

* Use graphics hardware (the graphics pipeline), via
OpenGL, MesaGL, or DirectX

Graphics Pipeline (OpenGL)

Ray Tracing

* Most global effects available in ray tracing will be
sacrificed, but some can be approximated

Ray Casting vs. Rendering Pipeline

Ray Casting Rendering Pipeline
For each pixel For each triangle
For each object For each pixel
Send pixels into the scene Project scene to the pixels
Discretize first Discretize last

"Inverse-Mapping" approach "Forward-Mapping" approach \
to Computer Graphics
For each piel on the sereen Vi
go through the display list N .
T } } [e Rester Oisoiy sty Lt
H T . :
] o0

V4

47

Scan Conversion (Rendering Pipeline)

* Given a primitive's vertices &

the illumination at each vertex; 9iBegin (GL_TRIANGLES)

glNormal3f(...)

o Fi 1 glVertex3f(...)
F}gure out which S Vertex3£(. ..)
pixels to "turn on" glvertex3£(...)

to render the primitive glEnd();

* Interpolate the
illumination values

Limitations of Scan Conversion

to "fill in" the primitive

* At each pixel, keep track of

the closest primitive (z-buffer)

 Restricted to scan-convertible primitives
— Must “polygonize” all objects

* Faceting, shading artifacts

» Effective resolution is
hardware dependent

* No handling of shadows, ray tracing
reflection, transparency [mmmmm__x EHIE D

* Problem of overdraw
(high depth complexity) -

* What if there are
many more triangles

. scan conversion scan conversion
than pixels? flat shading gouraud shading |

Ray Casting vs. Rendering Pipeline

Ray Casting Rendering Pipeline
For each pixel For each triangle
For each object For each pixel
* Whole scene must be in * Primitives processed
memory one at a time
* Depth complexity: » Coherence: geometric
w/ spatial acceleration data transforms for vertices only
structures no computation * Early stages involve analytic
needed for hidden parts processing
* Atomic computation Computation increases with
* More general, more flexible depth of the pipeline
— Primitives, lighting effects, — Good bandwidth/computation ratio
adaptive antialiasing .

Sampling occurs late in the
pipeline
* Minimal state required

Questions?

Today

» Ray Casting / Tracing vs. Scan Conversion

* Traditional Graphics Pipeline

* Clipping

» Rasterization/Scan Conversion

The Graphics Pipeline

(Perspective / Orthographic)

Modeling ‘ Input:
Transformations Geometric model:
Description of all object, surface, and
Illumin.ation light source geometry and transformations
(Himifta) Lighting model:
Viewing Transformation Computational description of object and

light properties, interaction (reflection)

Clipping

Synthetic Viewpoint (or Camera):
Eve position and viewing frustum
Raster Viewpaort:

Projection
(to Screen Space)

Pixel grid onto which image plane is mapped

Scan Conversion
(Rasterization)

Output:

Visibility / Display

» Colors/Intensities suitable for framebuffer display

(For example, 24-bit RGB value at each pixel)

The Graphics Pipeline

Modeling
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

Primitives are processed in a series
of stages

Each stage forwards its result on to
the next stage

The pipeline can be drawn and
implemented in different ways
Some stages may be in hardware,
others in software

Optimizations & additional

programmability are available at
some stages

Modeling Transformations

_ * 3D models defined in their own

Tllumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

coordinate system (object space)

* Modeling transforms orient the
models within a common
coordinate frame (world space)

IS

Object space World space

[llumination (Shading) (Lighting)

Modeling
Transformations

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

* Vertices lit (shaded) according to
material properties, surface
properties (normal) and light sources

* Local lighting model
(Diffuse, Ambient, Phong, etc.)

Viewing Transformation

Modeling
Transformations

Tllumination
(Shading)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

* Maps world space to eye space

* Viewing position is transformed
to origin & direction is oriented

_ along some axis (usually z)

Visibility / Display

o

World space

Clipping

Modeling
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

» Transform to Normalized Device
Coordinates (NDC)

Eye space

* Portions of the object
outside the view
volume
(view frustum)
are removed

Projection

Modeling
Transformations

Tllumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Scan Conversion
(Rasterization)

Visibility / Display

* The objects are projected to the
2D image place (screen space)

} :

Y

(\J width
top— T

—far
bottom A

/vllf eye space """'nc’ar‘
X right

Screen space

Scan Conversion (Rasterization)

Modeling
Transformations

Tllumination
(Shading)

Viewing Transformation

* Rasterizes objects into pixels

* Interpolate values as we go
(color, depth, etc.)

Visibility / Display

Modeling
Transformations

Tllumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

* Each pixel remembers the
closest object (depth buffer)

* Almost every step in the
graphics pipeline involves a
change of coordinate system.
Transformations are central to
understanding 3D computer
graphics.

(Perspective / Orthographic) T)I\ T =R C- 7o) 7 e e e
+ 0('*#“_; + |+ |+ lllo- + |4 PSS o o S
9..g o I S [++]e[+]+
Cligphi + |+ \t H4le] 4]+ JI |]+ |+
+ [+ [# e[+ £]+ 4 w+]H]+]F
Projection + |+ [+ \t + | &1 | PR R S
(to Screen Space) e[-;" 2] g i e
+ [+ |+ - | T ht [+]|+ [+ |+
+ |+ s L+ |14 R+]+
T-e—D I P P e 4 | + [+ \K F+]+
+ [+ [+ [+ + \ +H+]+]+ _'-F"“#—L:l.:.__-j | + b— [+]+
+ ||+ +] -1-[1I wl+e[+|r]e|+]F e Al
VlSlblllty / Display + [+ F]+[+ ;][+ HEEEREE
.
Questions?

Today

 Ray Casting / Tracing vs. Scan Conversion

* Traditional Graphics Pipeline

* Clipping

— Coordinate Systems in the Graphics Pipeline

» Rasterization/Scan Conversion

Clipping

* Eliminate portions of objects
outside the viewing frustum

* View Frustum

— boundaries of the image

plane projected in 3D left '.

— anear & far
clipping plane

 User may define

camera/eye

What if the p_is > eye_?

zaxis o

image plane

(eyef eve, zaxis o
o
image plane
1
1 ~ 7
What if the p_~ eye
o
o

z axis

(eye , eye X

27?

image plane

What if the p_= eye ?

(eye, eye,

27?

| image plane

Why Clip?

» Avoid degeneracies
— Don’t draw stuff

. o v .)‘*a;\\(;iwcftion
— Avoid division

eye
by 0 and overflow
°

» Efficiency

— Don’t waste time on objects image plane!
outside the image boundary

* Other graphics applications (often non-convex)

— Hidden-surface removal, Shadows, Picking,
Binning, CSG (Boolean) operations (2D & 3D)

b eh 1 n d th e ey e A\ .‘ :
i

Z axis

http://matter.sawkmonkey.com/raytracer/csg.html

http://en.wikipedia.org/wiki/
Constructive_solid_geometry#/media/File:Csg_tree.png

Clipping Strategies

* Don’t clip (and hope for the best)
* Clip on-the-fly during rasterization
* Analytical clipping: alter input geometry

)
N
]
&

Clipping in the Graphics Pipeline

Modeling
Transformations

Tllumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

* Former hardware relied on
full clipping

* Modern hardware mostly
avoids clipping
— Only with respect to

plane z=0

* In general, it is useful to learn
clipping because it is similar
to many geometric algorithms

Common Coordinate Systems

Object space
— local to each object
World space

— common to all objects

Eye space / Camera space
— derived from view frustum

Clip space / Normalized

Device Coordinates (NDC)
- [_19_19_1] - [191’1]

» Screen space

— indexed according
to hardware attributes

L j=

Coordinate Systems in the Pipeline

Modeling
Transformations

Tllumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

— é & Object space

World space

Eye Space /
Camera Space

Clip Space (NDC)

K

I ‘ Screen Space

Normalized Device Coordinates

* Clipping is more efficient in a rectangular, axis-aligned
volume: (-1,-1,-1) — (1,1,1) OR (0,0,0) — (1,1,1)

Eye Space

{right = fin, top * fin, —far)

{right, top, —naar)

{left, bottom, —naar)

right-handed; view is along -n axis

{1,

Normalized Device Coordinates

1)

-

—1,=1,=1)

left-handed; z increases into display

Questions?

* Clipping

— Line Rasterization

» Ray Casting / Tracing vs. Scan Conversion
* Traditional Graphics Pipeline

» Rasterization/Scan Conversion

— Triangle Rasterization

2D Scan Conversion

» Geometric primitives
(point, line, polygon, circle, polyhedron, sphere...)
» Primitives are continuous; screen is discrete

* Scan Conversion: algorithms for efficient generation of

Scan Converting 2D Line Segments

— Segment endpoints (integers x1, y1; x2, y2)
* Identify:
— Set of pixels (x, y) to display for segment

the samples comprising this approximation

R

sl a]a]|e]e]s]s]+ e+] |+ wla e[| e[| e]e]+]+

T T T A TN =+ o=~
" ‘}‘,\,l,,_‘_‘,.,,,,,,,¢,‘,

y2) [+~
aE

. :
NI
AR [~ el -
S | « |« [« [« «[+|+| [+[«[+]+]+|+ e[+~ .
+ \ ,L,

AERER Beeee

++++++++

+ | |+
+ |+

+++++++

w|a |+ [+ P+ +]+]+]+]+

Line Rasterization Requirements

* Transform continuous primitive into
discrete samples

* Uniform thickness & brightness

 Continuous appearance

* No gaps ey

A S I [A A A

* Accuracy

o+ e+ l++]+]+
* Speed SEaEa T pa Y gt

~¢.¢.
s
A

Algorithm Design Choices

* Assume:
—m=dy/dx, 0<m<1
* Exactly one pixel per column
— fewer — disconnected, more — too thick

. ; e[+« +]+] <]+ oI
(
aE - v X2,
¢(‘)_y ')+
[[f e e [[+ =[5+ [+
BE |+ B . Bae
AE ~ - % +
aE BE | 7
>
AEBRRDY 4¢
ABgnaD Be SEE
7
AR BB oonne +[+]+
Oe1- v 1)
AV RALE

Naive Line Rasterization Algorithm

» Simply compute y as a function of x
— Conceptually: move vertical scan line from x1 to x2
— What is the expression of y as function of x?
— Set pixel (x, round (y(x)))

X—X

1
(2-y1)
x1

y=yl+

sl el Tl el +.+.|++*+++ xz
) [) ey e e e (X2 2y -
N 2 e = yl+m(x—xI)
>
YIl--l--I--
AU PRPUPY oul [Y dy
P I e + |+ RN I [R S PO R O I m=—
EE oD IDnnnannnne dx
i1
P M W W+ e[« +]+]+]+]+]+

Efficiency

» Computing y value is expensive
y=yl+m(x—xl)

* Observe: y += m at each x step (m = dy/dx)

nEEDDEOE 22 -

) EE e 7 T
yi{x 1) LLEE LT TEY TRy CF B B
y(x) o T T
nBnnr oe T T

R ERNEE e e

XK YT T T

X x+1

Bresenham's Algorithm (DDA)

* Select pixel vertically closest to line segment

— intuitive, efficient, pixel center always within 0.5 vertically
* Generalize to handle all eight octants using symmetry
» Can be modified to use only integer arithmetic

Line Rasterization & Grid Marching

 Can be used for ray-casting acceleration
* March a ray through a grid

* Collect all grid cells, not just 1 per column (or row)

+ |+ |+ |+ |+ +]|+ /Q
+ |+ |+ |+ |+ &Z +
+ |+ |+ | + /: + | +
t]+]+ + |+ |+ | +
+ ,/4 + |+ |+ + |+
(' + |+ |+ |+ |+ +]|+
Questions?

Brute force solution for triangles

* For each pixel
— Compute line equations at pixel center
— “clip” against the triangle

Ve Problem?

BB [+]+
P]+

Brute force solution for triangles

* For each pixel

— Compute line equations at pixel center

— “clip” against the triangle

. . . . N N
/4 |+ || F]+]+ |+ |+ + +\+ |+
L g +|+ [+ 4]+ 4| e

Problem?

If the triangle is small,
a lot of useless
computation

Brute force solution for triangles

* Improvement: Compute only for the screen
bounding box of the triangle

» How do we get such a bounding box?
— Xmin, Xmax, Ymin, Ymax of the triangle vertices

o AREA BN ENDEE

Can we do better? Kind of!

* We compute the line equation for many useless

pixels
* What could we do?

PR AU A O O O R R R 7 ' O R B e

Scan-line Rasterization

» Compute the boundary pixels
» Fill the spans
* Interpolate vertex color along the edges & spans!

e L L T L L L L L L L L L L
BEEEnnnnnne el [e e e e [=] [« [+ *][«[+]+]+ AEannne
I + . + v+ | | | v
- - [+ - v
e -

+ | : :

- 3

+ + + |+

+ + -

- B + - -

- - -

- - + - -

+ + + |+ + + |+

But These Days...

* Triangles are usually very small

* Setup costs are becoming more troublesome
* Clipping is annoying

* Brute force is tractable

ARRRERREARY o SORnnE
Q& Annnnnne
e BEne T e
" |- BEas BEnnnnnar
. BEnne P I I IO) P g "
|+ |+ BEERD™ Bk
I $,‘ﬂ$¢*, 4|+] 4]+
o w [+ [+ | = e[+~
e[+ dEonnnnnnne
e+ BERannnnnne
e JEED PR PR R U U) e
I
/* e I e e e e e e -

Modern Rasterization

For every triangle
ComputeProjection
Compute bbox, clip bbox to screen limits
For all pixels in bbox
Compute line equations
If all line equations>0 /pixel [x,y] in triangle
Framebuffer([x,y]=triangleColor

Questions?

Reading for Friday:

» “Ray Tracing on Programmable Graphics Hardware
Purcell”, Buck, Mark, & Hanrahan SIGGRAPH 2002

Generate Generate Generate Generate
Shadow Rays Eye Rays Eye Rays Eye Rays

! ' '

Find Nearest
Intersection

Find Nearest

Find Find Nearest
Intersection Intersection Intersection
Shade Hit | Shade Hit ‘ ‘ Shade Hit ‘ Shade Hit
¢ ¢ L+2 ¢ 1

Shadow Caster Ray Caster Whitted Ray Tracer Path Tracer
(a) (b) © (d)

Reading for HW4:

* “Improving Shadows =
and Reflections via
the Stencil Buffer”,
Mark Kilgard,
NVIDIA

