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Substituting from Eq. (2) for I' + 1 and rearranging,
we have

1+ (dIn D)/(d1n p) = poD*/[ple + 2)]. (34)

Substituting Eq. (3A) into Eq. (2A) and the result
into Eq. (1A), we find

dS/dp, = ~8,D’a/(a -+ 2). {44)

To eliminate S, we use dE = TdS — pdr at constant
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p and find 1/a = (1/p)(8E/dv), = (T'S,'p) — 1
Using, as before S.'S, = p’c® = p{D* to climinate
S,, we have

S, = [(1 + a)/a)(p,TeD"). (34)
Finally, combining Eq. (4A) with Eq. (34), we find
dS/dpe = —(p/Tet)lla + 1)/l@ + 2)],  (64)

which demonstrates that if @ > —1 then dS dp, < ¢.
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A new technique is described for the numerical investigation of the time-dependent flow of an
incompressible fluid, the boundary of which is partially confined and partially free. The full Navier—
Stokes equations are written in finite-difference form, and the solution is accomplished by finite-
time-step advancement. The primary dependent variables are the pressure and the velocity com-
ponents. Also used is a set of marker particles which move with the fluid. The technique iz ealled
the marker and cell method. Some examples of the application of this method are presented. All non-
linear effects are completely included, and the transient aspects can be computed for as much clapsed

time as desired.

INTRODUCTION

HIS paper describes in detail a new technique

for the numerical solution of problems in the
dynamics of an incompressible fluid with a free sur-
face. The method has been developed for use on a
high-speed eleetronic computer and would be im-
practical for hand-solution purposes. It is here des-
ignated the marker and cell method.

Specifically, the problems 1o which the method
applies involve the time dependent motion of a vis-
cous, incompressible fluid in two-dimensional Carte-
sian coordinates. The fluid may be bounded in part
by the walls of an irregular box or by lines of re-
flective symmetry. A uniform body force (gravity)
may act on the fluid, and a preseribed pressure may
be applied to the swrface, variable in both position
and time. The investigator supplies {0 the computer
the initial and boundary conditions for a specilie
study of interest, and the computer then develops
the solution through a succession of closely spaced
time inerements for as long as the resulls continue
to be of interest. The analogy to a physical experi-
ment is therefore quite close.

The solution technique makes use of finite-dif-

ference approximations applied to the full Navier-
Stokes equations. The primary dependent variables
are ithe pressure and the two components of veloeity.
Neither the vorticity nor the stream function enters
explicitly into the analysis.

The finite-differences apply to both space and time
variations. Tor the former the region is divided into
numerous small rectangular zones or cells, and the
field variables in cach are characterized by single
average values. For the time variations the changes
arc represented by a succession of field variable
values separated by small increments of time. If
both the finite space and time differences are small
enough, the results will be sufficiently close to con-
tinuous, while large differences may destroy essen-
t1al resolution to the point of producing nonsense.

In recent years there have heen many techniques
developed for the numerieal solution of complicated
problems in fluid dynamies. Spectacular resulis came
first for compressible (high-speed) flows, and a large
literature has been produced on the subject.” In-
compressible flows are now also being studied nu-
mer, 3. Ternbach, and M. Rotenberg, editors,

Methods in Compulational Physies (Aeademic Press Inc
New York, 1964), Vol. 3.
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merically with considerable success, and new methods
rapidly are becoming available.

Oue of the principal applications of incompressible
fow calculations has been to the problem of weather
analysis and prediction.2 Problems of natural con-
gection have also been extensively investigated.®™®
A useful survey of previous work has been given by
Pearson,” who has also proposed some computing
techniques. A group at Wisconsin® is now under-
taking the study of a variety of additional numerical
approaches to the solution of the Navier-Stokes
equations. The published reports of these more
recent investigations contain bibliographies from
which can be traced much of the earlier work.

At Los Alamos the efforts in computing incom-
pressible fluid dynamics have been directed primarily
to nonsteady viscous flows.? The prinecipal published
applications have been to the von Karman vortex
street behind a cylinder.'®™" As in almost every
other incompressible-flow technique, the primary
dependent variables used in the calculations are
the vorticity and the stream function.

Tor the case of free surface flows, we have found
in the marker and cell technique that the primary
physical variables, velocity and pressure, have
several advantages over the stream function and
yorticity. The free surface boundary condition of
vanishing stress, or of prescribed normal stress, be-
comes more natural to apply. In addition, the phys-
ical significance of any new modification in technique
is more readily visualized.

DESCRIPTION OF THE METHOD
Qutline of Procedure

The detailed derivation of the finite difference
equations is based upon the following sequence of
events by which the configuration is advanced from
one time step to the next.

(1()26Y' Mintz, University of California Report AFCRL 690
961).
3 7. 0. Wilkes, Ph.D. thesis, University of Michigan (1963).

47 D. Hellums and S. W. Churchill, International Heat
Transfer Conference, Boulder, Colorado (1961).

s J. A. Clark and H. Z. Barakat, University of Michigan,
College of Engineering, Technical Report 1 (1964).

5 J. W. Deardorfl, J. Atmospheric Sei. 21, 419 (1964).

1 (. E. Pearson, Sperry Rand Research Report SRRC-
RR-64-17 (1964).

# . Greenspan, P. C. Jain, R. Manohar, B. Noble, and
A. Sakurai, University of Wisconsin, Mathematics Research
Center, Technical Summary Report 432 (1964).

2 J.'E. Fromm, Los Alamos Scientific Luboratory Report
LA-2910 (1963).

1 J. E. Fromm and F. H. Harlow, Phys. Fluids 6, 975
(1963).

# P 4. Hulow and J. E. Fromm, Phys. Fluids 7, 1147
(1964).

(1) The complete field of velocities is known at
the beginning of the cycle, either as a result of the
previous cycle of calculation or from the prescribed
initial conditions. It is assumed that this velocity
feld is conservative, i.e., that the finite-difference
analogy of velocity divergence vanishes everywhere.
In addition, the coordinates of a set of marker par-
ticles are assumed to be known; these show which
region is occupied by fluid and which is empty.

(2) The corresponding field of pressures is cal-
culated in such a way as to assure that the rale of
change of the velocity divergence also vanishes every-
where. This requires the solution of a Poisson’s equa-
tion, which may be accomplished by a relaxation
technique or any other suitable procedure.

(3) The two components of acceleration are cal-
culated; the products of these with the time incre-
ment per cycle then give the changes in velocity to
be added to the old values.

(4) The marker particles are moved according to
the velocity components in their vicinities.

(5) Adjustments are made for the passage of
marker particles across cell boundaries. Whenever
the result puts fluid into a previously empty cell or
empties one which previously contained fluid, cer-
tain necessary velocity modifications are performed.

This, then, completes the advancement of con-
figuration to the end of the new eycle. Actually,
several crucial points have been omitted in this
brief summary; these are more easily discussed in
the detailed deseription to follow.

One point should be emphasized. The marker
particles introduced into this incompressible flow
caleulation are only for the purpose of indicating
fluid configuration. They show which cells contain
fluid and especially which cells lie along the free
surface. They also serve as a flow visualization
coordinate systeni whereby fluid element trajectories
and relative positions can be observed. They do not
participate in the calculation as do the Particle-in-
Cell-method particles in the Los Alamos computer
program for compressible flows (see Ref. 1, pp. 319-
343).

The Finite Difference Equations

The starting point for the tlerivation is the N avier—
Stokes equations for viscous incompressible flow
in two-dimensional Cartesian coordinates. We use a
differential form which is completely conservative of
mass and momentum,

My ®
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Frc. 1. Sketch of typical mesh and marker-particle lavout,

An actual caleulation would be much more finely resolved.
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The z and y coordinate axes are horizontal and ver-
tical, respectively, with the origin located at the
lower left of the computing region. The correspond-
ing components of the velocity are u and v, while
¢ is the ratio of the pressure to the (constant) density.
(For brevity, we usually refer to ¢ simply as “pres-
sure.”’) The kinematic viscosity coefficient is des-
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ignated by ». The body force is designated by 1he
constant accelaration components ¢, and g,.

The finite-difference approximation to the equa-
tions corresponds to an Eulerian mesh of cells cover-
ing the computation region, as sketched in Fig. 1.
For each cell the local field variable averages are
centered as shown in Fig. 2. The cells are numbered
by indices i and j which count cell center positiong
along the horizontal and vertical directions, re.
spectively. Cell boundary positions are labeled with
half-integer values of the indices. The dimensions
of the rectangular cells are sz and 6y.

In addition to the space index subseripts, we use
a superscript to number the time cycle. For example,
u73;,; designates the horizontal velocity at the time
t = (n -+ 1)é8t, in which &t is the time increment per
cycle. When the cycle number superscript is omitted,
it is assumed that its value is n, corresponding to the
time ¢ = ndét. (The time cycle advancement to he
discussed 1s from 7 to n + 1, so that the omission of
a superscript refers to the value of the quantity at
the beginning of the evcle.)

With these definitions the finite-difference ap-
proximations to Egs. (2) and (3) can be written in
the following form:
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It may be noted that some of the velocity values are
not centered at points indicated in the mesh dia-
gram. Whenever this occurs an average of adjacent

values is implied. Representative examples are
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Then the finite-difference analog of Tq. (1) is

D;; = 0.
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*- Fra. 2. Field variable
value placement about
a  computational cell.
Velacities are defined at

Yz, @ Y @ inre g

#i cell boundaries while
pressures ave defined at

o cell centers.

et

an ecruation which is of fundamental importance to
the derivation. We have used @, ; as an abbreviation
for the following:

R
Qi = G

+ (Z',ui‘W)z + (Z'Ir'.s';!>2 - 2("/,1) + ‘-
oy dv 8y

V= 204, )¢

[

2

'[(Z';—}.ffg)(l'_f..;ﬂ) + (’llf—g,;—;>(”,—;.;'—;)
- (ui‘&f—%)(('i‘z,f—}) - (M-s},;';})(i"«-}'f-f»)]- (8)

The procedure for determining pressures is based
upon the requirement that D7} vanish for every
cell at the end of the time cycle. This leads to the

equation for ¢, ;

Qiv1,i + Ci-1.: — '295:.;
sa*
. =20,
4 @it + @izt € _p W)
8y
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Insertion of this into Eq. (7) shows that D%} = 0
tan result from ealculation of the new velocities,
Provided that Eq. (9) is accurately solved for the
Pressures. In principle, Q. ; could be used in Eq. (9)
Instead of R, ; since the two differ by terms pro-
Portional to D. In practice, however, the use of R, ;
15 desirable in that the solution of Eq. (9) need not
: be nearly so accurately derived to keep the accumula-
tion of compressional discrepancy to a sufficiently
ow level. Since Eq. (9) is solved by an iterative pro-
cedure (see, for example, Ref. 9}, there is considerable
economy in computer usage resulting from any proc-
cess which decreases the required accuraey of solu-
tion. Tests have shown, however, that with a very

stringent convergence requirement, the cumulative
results of a caleulation are independent of whether
Q. ;or B, ;s used in Eq. (9).

In order that D71 identically vaunish for every
cell, it is necessary also that D, vanish at all
boundaries of the fluid. This requirement forms a
useful basis for determining the finite difference
analogy to the necessary boundary conditions.

The Eqs. (4), (3), (9), and (10) are the principal
ones used in performing the culceulations. irst, the
value of R, ; is computed for every cell, using in
Lz, (8) and (10) veloeities availuble at the beginning
of the eyele. Second, Bq. (9) is solved for the value
of ¢, ; for every cell. Third, the pressures so obtained
are put into Eqs. (4) and (5) and the new velocity
components are computed.

Marker Particles

If there were no free surface to the fluid, the es-
sential parts of the calculation would then be com-
plete, and after some bookkeceping processes the
next eycle could commence. To include o free sur-
face, one more step is essential. The new position
of the surface must be ealeulated. This implies a
scheme for keeping track of surface position. The
oue we have developed actually goes bevond this
basic requirement; it supplies a coordinate system
of marker particles whose trajectories follow the
motions of elements throughout the fluid. Marker
particles are initially placed in the cells containing
fluid, and they subsequently are moved with local
velocity. A linear interpolation is performed to cal-
culate the velocity with which a particle should
move. The interpolation weighting depends upon
the distance of the particle from the nearest velocity
points in the Eulerian mesh of cells.

A cell with no marker particles is considered to
contain no fluld. A cell with marker particles, lyving
adjacent to an empty cell, is called a surface cell.
All other cells with particles are considered to be
filled with flud.

Boundary Conditions at Rigid Walls

A rigid wall may be either of two types, no-slip
or free-slip. The latter may be considered to rep-
resent a plane of symumetry, rather than a true wall,
or if the fluid is viscous. it may represent a non-
adhering (“greased”) surface. Walls are restricted
in ortentation so that they lie along the boundaries
of the Eulerian caleulational cells. Relaxation of
this requirenient could be accomplished only at the
expense of considerable inerease in complication.

A vertical wall therefore passes through the hori-
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zontal-velocity mesh points, and the velocities at
those points vanish at all times for either type of
wall. A vertical wall does not pass through vertical-
velocity mesh points, but the calculation makes use
of the values of v at mesh points lying just outside
of the wall. In the example shown in F ig. 3, the caleu-
lations require a value of ¢/, a typical vertical ve-
locity beyond the wall. (In the following discussion,
a prime refers to the exterior cell quantity.) For a
no-slip wall the boundary condition is o = -,
while for a free-slip wall it becomes y/ = + o
Analogous boundary conditions are applied at a
horizontal wall, In general, the tangential velocity
reverses or remains unchanged according as the
wall is no-slip or free-slip. The normal veloeity re-
verses for a free-slip wall, wherever it is needed in
Eq. (4) or (3) or in the calculation of R.; Tora
no-slip wall the normal velocities bevond the wall
must be caleulated in such a way as to ensure that
D vanishes for the exterior cell.

Wall boundary conditions are also nceded for
the solution of the pressure equation. While it is
not necessary 1o -calculate the changes in normal
velocity for points lying on the wall, the boundary
conditions for ¢ must be consistent with the identical
vanishing of that velocity. The derivations are ac-
complished using Eqs. (4) and (5).

In the case of a free-slip wall, the boundary con-
dition is easily derived. For a vertical wall refer 1o
LEq. (4). With reversal of all normal velocities and
no change in all tangential velocities, every term
vanishes except those with ¢ or g.. Jeading to the
boundary condition ¢ = ¢ == g.6x. The sign js “ 47
if the fluid lies 1o the left of the wall, ““ =" if it lies
to the right. T'or a horizontal wall reference 1o Eq.
(5) shows a similar vanishing of terms, leading to
¢ = ¢k g.8y, where the sign is “ 4+ if the fluid lies
below the wall and “ —" if the fluid lies above.

For a no-slip wall the veloeitjes beyond the wall
must always be chosen in such a way that D’
vanishes in order that D is prevented from diffusing
into the fluid. This results in a somewhat more com-
plicated sct of pressure boundary conditions than
for the free-slip wall. Consider the case of a vertical

wall as shown in Tig. 4. The vertical velocities are
simply reversed across the wall. Since D = 0 in the
fluid cell, it follows that the vanishing of D’ is ac.
complished only if v’ = +u,, in contrast to the re-
quirement for w’ for a free-slip wall.

In summary: (a) for a free-slip wall normal ve-
locity reverses while tangential velocity remains the
same; (b) for a no-slip wall normal velocity remaing
the same, while tangential velocity reverses.

For case (a) the pressure condition has been de-
rived and has a simple form. For case (b) the no-slip
wall, if vertical

o' = ¢ g, dr = (2u,/8x), (11)

where the sign is “ 4+ for fluid to the left of the wall
and “ =" for fluid to the right of the wall. If it is
horizontal

¢ =g &g, by £ (On,/8y), (12)

where the sign is “+7” for fluid below the wall and
“—"" for fluid above the wall.

Boundary Conditions at Free Surface

Velocity boundary conditions at a free surface
are based upon the requirement that D = 0 for
surface cells. The easiest case to discuss is that of a
surface cell which faces vacuum on only one side.
Velocities for the other three sides are calculated
in the usual manner, and that of the fourth side
follows uniquely from the vanishing of D. Surface
cells with two sides towards the vacuum are treated
somewhat differently. For them we require du/éz
and dv,'dy to both vanish separately; that is, each
vacuum-side velocity is set equal to the velocity
on the side of the cell across from it. This, of course,
also assures that D = 0. A cell with three sides faci.ng
vacuum is relatively rare. The vacuum side opposite
the fluid side is made to carry the velocity of that
side; the other {wo vacuum sides which oppose each
other are caleulated to follow frecly the effects of
the body force and do not otherwise change. A
surface cell with four sides towards the vacuum 18
similarly treated so that this isolated drop follows
a free-fall trajectory.
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The pressure boundary condition at the free sur-
face is derived from the requirement of vanishing
normal stress component' or of the equating of it
to the applied external pressure. There are two rea-
sons, however, why this condition is diffienlt to
apply accurately. First, the normal stress compo-
pents ean be ealeulated only if surface orientation
is known, and this can be accurately sensed in a
finite difference representation only with great dif-
fieulty. Second, the various velocity derivatives at
the surfuee are chosen on the basis of vanishing D, in
a manner which apparently gives fairly accurate
resulis in test problems, but which does not neces-
sarily give the proper viscous stress in the surface
“gkin.” There are fairly complicated ways in which
both of these difficulties can be resolved. For the
test problems reported here, however, we have sim-
ply neglected the effect of the viscous stress in the
surface boundary condition and equated surface
pressure directly to applied pressure. The procedure
will give valid results if the coefficient of viscosity is
sufficiently small, and we have used computational
experimentation as a means of testing the approxima-
tion. A more carceful utilization of the correct bound-
ary condition awaits further development of metho-
dology,

Numerical Stability and Accuracy

Computational experiments have indicated con-
siderable numerical stability for this computing tech-
nique. Of particular significance is the fact that
viscosity is not needed to insure stability. This is
in contrast to many of the Eulerian techniques for
fluid dynamies calculations in which the inclusion
of an “artificial viscosity” term is required both for
the treatment of shocks in compressible flows and
for the elimination of stagnation fluctuations.

We have not succeeded in deriving the full neces-
sary and sufficient conditions for numerical stability,
Some necessary conditions for the case in which
bt = by are (4v8/62°) < 1 and (gdst*/s:2%) < 1.
In the latter, g is the magnitude of the body ac-
eeleration, while d is the maximum depth. The first
tondition is the usual one for diffusional stability,
while the second is the incompressible-flow analogy
to the Courant condition.™

The question of accuracy has likewise been ex-
Plored principally by experimentation. The sue-

teeding section describes one set of ealculations
——

2 L. D. Landau and E. M. Liishitz, Fluid Mechanics
on-Wesley Publishing Company, [Ine., Reading,
‘f-"-"-*-'l-:lm.:.erl:i, 1959), p. al.

*. H. Harlow, Los Alamos Scientific Laboratory Report
S-2452 (1960).
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designed to test aceuracy, and it is shown that
detailed comparisons with physical experiments ex-
hibit excellent agreement.

Since the computing technique is meant to be
accurate for a variety of problems lacking erucial
comparisons, it has been useful to develop an in-
ternal-consistency accuracy check. The natural
choice is verification of overall incompressibility.
For this purpose the computing code keeps a running
account of the total number of cells which contain
any marker particles. Santald,'' quoting a result
of Hadwiger, shows that if the marker particles
were infinitely dense then the mean number of cells
contuining any should be

N = (A/8x 8y) + (P/m)(8e + bsy)/(sz 8y), (13)

in which P is the perimeter length and A is the area
defined by the curve enveloping the particles. (We
have dropped a term of order unity to account for
each end of our perimeter usually being restricted
to lie on a coordinate axis.) The first term dominates,
while the second is a positive correction accounting
for the fact that every partially filled surface cell is
counted as though totally filled.

With a sparse distribution of marker particles,
the formula for ¥V needs modification. Let \ =
(9s./6x) = (Bs,/8y) be the ratio of particle spacing
to cell size, here assumed the same in both directions,
To account for N # 0, it is necessary to multiply
the second term of Eq. (13) by f(\), a function for
which an expansion is assumed to hold when X\ is
small: f{(\) = a, + a,\ + ... . Now we require f(0) =
1 and f(1) = 0, leading to the result f(\) = 1 — )\
when higher-order terms are neglected. This leads
to the proposed formula

N = (A/5z &)
+ (P/x)(dx + dy)(1 — N\)/(b by). (14)

In caleulations for which it was verified that D,
was negligible in every cell, we found excellent agree-
ment between the observed value of N and that
predicted by Eq. (14), thus verifying the use of Eq.
(14) as an accuraey check. These tests examined
both X = 0.25 and A = 0.30,

It should be emphasized that such a check is only
a necessary, but not a sufficient, condition for ac-
curacy. It could indicate good results, for example,
even when the finite-difference mesh was too coarse
for proper resolution of the problem. Careful com-
parisons with the results of actual physical experi-
ments give the only erucial tests of accuracy.

YL A, Santals, Introduction to Iniearal Geometry (Her-
mann & Cie., Paris, 1953).

e -s BTN




|
:'"L

188 F. H. HARLOW

AND J. E. WELCH

4141

RS R ELORE FIMRSEERE NS
o \“% SRBEURROOY IR RN RS
AR 10 T DDA AN AN SO S p  0 O 90  0

FELL e O A

TV S S B0 1 P s
AR

i

Fig. 5. Confignration of marker particles for the broken
computational cells for each

EXAMPLES OF THE CALCULATIONS

The flow dynamics behind a broken dam is a
useful first application of the Marker-Cell com-
puting method for three reasons. First, the experi-
mental data available for comparison’ enable the
technique itself 10 be proof tested, Second. the prob-
lem and its variants are ideal for demonstrating
the versatility of the computing method as well as
for showing the large amount of information that
a caleulation can produce. Third, the caleulations
demonstrate many features of this 1ype of flow for
which neither experimental nor theoretical informa-
tion has previously been obtained.

We have performed ealeulations for iwo variations
of the basic broken dam problem. In the first one
the enfire dam is instantancously removed, allowing
the water fo flow into a dry stream bed. In the second
the dam is only partly broken. and the problem is
equivalent to that of an impulsive partial opening

of a sluice gate.

Fia. 6. Configuration of marker particles for the ope
sluice gate at times { = 0, 1.0, 1.5, 1.5, The grid of computing
cells 1= not shown.

35 J. C. Martin and W. L Movee, Phil. Trans. oy, Soc,
{London) A244, 312 (1952).

dam at times { = 0, 0.5, 1.0, 1.5, 2.0, 2.5. There were {our
sonare of the grid shown here.

In addition to comparisons with experimental
resultzg, we have compared with those of <hallow-
water theory.' While the former showed very close
agreement, the latter were found to be in consider-
able disagreement with the computer results.

All ecaleulations were performed on the IBX 7030
(Stretch) Computer. The results shown in Figs, 5
and 6 were processed from the computer by the
Stromberg Carlson SC-4020 Mierofilim Ilecorder.
They are presented exactly as obtamed from the
computer with no retouching or other alterations. A
typieal ealeulation required from ten to thirty min-
utes of computer time.

Figure 5 shows a typical sequence of marker
particle configurations for the broken dam. Com-
parison of the results with those from the experi-
ments of Martin and Moyee' showed excellent
agreement in all respeets, The deviations from shal-
low-water theory predictions are quite apparent.
In particular, the front of the wave js much retarded
i its initial motion and lacks the long sharp tip
predieted by analysis, This last, incidentally, can
be traced 1o the failure of the hydrostatic equilib-
rium assumption in shallow water theory rather
than to the effecis of viseosity deseribed by Whit-
han.'”

The sceond tvpe of broken dam problem J'--":““”'“'{E
here is equivalent 1o the instantancous partial open-
ing of a sluice gite, Several marker particle cob-

grid

of vomputational eclls is completely omitted from

ficurations are shown in Fig, 6. In this ease the

W I3 Stoker, Water Wares (Diterscienee Pnblishers, Incs

New York, 1957), Chap. 10,
14, B. Whitham, Proe, Roy. Soe. (London) A227, 39

(1935,
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TIME-DEPENDENT

the plot. There actually were twenty cells in the
anit height of the initial water configuration.

One feature that is pacticularly well shown in Fie.
g is the tendeney of lines of marker particles to
gprewd i one direction as they compress in the
other. It can even happen that internal computa-
tional cells may empty briefly, and it is NeCessLrY
that a special technique be employed to assure that
such cells continue to be treated as full of Auid,
Since the marker particles do not enter into the
calenlations at all. except to show free surface posi-
tion, the distortions of their appearance will then
have no effect upon the validity or smoothness of
the actual fluid dynamics.

Another computational feature is also indieated
by the particle plots of Iig. 6. Where the water is
shallow near the front of its motion, the surface
shows some steps. These can be attributed to the
computational cells and can be removed by finer
computational-cell resolution. Their effect is hardly
appreciable even in the case presented here.

Figure 7 illustrates another type of plot available
from the computer. Tt shows lines of constant pres-
sure for the sume caleulation as that of Fig, 6. Again,
there is a computational feature requiring expla-
nation. The zero-pressure surfnece boundary con-
dition is applied at the centers of the surface cells,
leading therefore to the inward dip of the zero pres-
sure isobar at the opening at the earliest time, Note
the crowding of the isobars as time advances and
the initial laree accelerations decrease,

CONCLUSIONS

A new computing method has been discussed
which has proved successful for detailed ealeulation
of the time-dependent, viscous, incompressible flow
of a fluid with a free surface. The technique is ap-
plicable to studying a wide varicty of problems in
two-dimensional Cartesian coordinates and could
easily be extended to other coordinate systems or
three space dimensions.

Examples of problems already investigated are (1

VISCOUS FLOW 2189

Fig. 7. Isubars for the
opening sluice gate at three
different times. Pressure in-
terval between lines is 0,05,
with the surface lines having
ZOTD pressure.

1+0.50

the Rayleigh-Taylor instability of a fulling free
surface,'® (2) splash of a falling column of water, (3)
the breaking of a dam, (4) flow under a sluice gate,"’
(5) flow over an underwater obstacle, (6) the slow
ereep of a highly-viscous blob, (7) the splash of a
linear drop. Caleulations are planned to study the
formation of waves by a linear explosion over the
surface and the breaking of waves on a sloping beach.

Modifications to a cylindrical coordinate system
will allow for more realistic studies of such problems
as the effect of a spherical explosion and the splash
of a spherical drop. The frequeney of large amplitude
waves js an interesting subject for either coordinate
system. These and other modifications have been
discussed in a recent report,” that also presents
numerous additional examples of the ealeulations.

ACKNOWLEDGMENT

This work was performed under the auspices of
the United States Atomic Energy Commission.

* F. H. Harlow and J. E. Weleh, (1o be published).

U F. H. Harlow, J. P. Shannon, and J. E. Welch, Science
149, 1092 (1965 .

2 J, E. Welch, F. H. Havlow, J. P. Shanuon, and B. J
Daly, Los Alamos Scientific Laboratory Report LA-3423

(1965,

e

I

eyl

i T o T =P N TR

S harinatel SR AL i

7 uﬂa.ﬂu&zm\ A




