Mass-Spring Systems

Pop Worksheet!

- For each adaptive grid method (quad tree, k-d tree, binary space partition) sketch the resulting grid if we split cells with > 2 elements and allow a maximum tree height of 5 (max of 4 splits from root).

Teams of 2. SOMEONE YOU HAVEN'T ALREADY WORKED WITH

When >1 choice is available: minimize the # of leaf nodes and maximize the distance from each point to the split.
Last Time?

- Implicit Surfaces & Marching Cubes/Tetras
- Collision Detection & Conservative Bounding Regions
- Spatial Acceleration Data Structures
 - Octree, k-d tree, BSF tree

Reading from Last Time:

- "Octree Textures", Benson & Davis, SIGGRAPH 2002
- "Painting and Rendering Textures on Unparameterized Models", DeBry, Gibbs, Deleon, and Robins, SIGGRAPH 2002
Today

- **Particle Systems**
 - Equations of Motion (Physics)
 - Forces: Gravity, Spatial, Damping
 - Numerical Integration (Euler, Midpoint, etc.)
- **Mass Spring System Examples**
 - String, Hair, Cloth
- **Stiffness**
- **Discretization**

Types of Dynamics

- **Point**
- **Rigid body**
- **Deformable body** (include clothes, fluids, smoke, etc.)

Carlson, Mucha, Van Horn, & Turk 2002

What is a Particle System?

- Collection of many small simple particles that maintain state (position, velocity, color, etc.)
- Particle motion influenced by external force fields
- Integrate the laws of mechanics (ODE Solvers)
- To model: sand, dust, smoke, sparks, flame, water, etc.

![Star Trek, The Wrath of Kahn, 1982](image1)

Particle Motion

- mass m, position x, velocity v
- equations of motion:
 $$ \frac{d}{dt} x(t) = v(t) $$
 $$ \frac{d}{dt} v(t) = \frac{1}{m} F(x, v, t) $$
 \[F = ma \]

- Analytic solutions can be found for some classes of differential equations, but most can’t be solved analytically
- Instead, we will numerically approximate a solution to our initial value problem
Higher Order ODEs

- Basic mechanics is a 2nd order ODE:
 \[
 \frac{d^2}{dt^2} x = \frac{1}{m} F
 \]

- Express as 1st order ODE by defining \(v(t) \):
 \[
 \frac{d}{dt} x(t) = v(t) \\
 \frac{d}{dt} v(t) = \frac{1}{m} F(x, v, t)
 \]

\[
X = \begin{pmatrix} x \\ v \end{pmatrix} \quad f(X, t) = \begin{pmatrix} v \\ \frac{1}{m} F(x, v, t) \end{pmatrix}
\]

\(X \) is a vector storing the current state of the particle \\
\(f(X, t) \) describes how to update the state of the particle

Path Through a Field

- \(f(X, t) \) is a vector field defined everywhere \\
 - E.g. a velocity field which may change over time

Note: In the simplest particle systems, the particles do not interact with each other, only with external force fields

- \(X(t) \) is a path through the field
For a Collection of 3D particles...

Given

\[X = \begin{pmatrix} p_x^{(1)} \\ p_y^{(1)} \\ p_z^{(1)} \\ v_x^{(1)} \\ v_y^{(1)} \\ v_z^{(1)} \\ p_x^{(2)} \\ p_y^{(2)} \\ p_z^{(2)} \\ v_x^{(2)} \\ v_y^{(2)} \\ v_z^{(2)} \\ \vdots \end{pmatrix} \]

\[f(X,t) = \begin{pmatrix} v_x^{(1)} \\ v_y^{(1)} \\ v_z^{(1)} \\ \frac{1}{m_1} F_x^{(1)}(X,t) \\ \frac{1}{m_1} F_y^{(1)}(X,t) \\ \frac{1}{m_1} F_z^{(1)}(X,t) \\ v_x^{(2)} \\ v_y^{(2)} \\ v_z^{(2)} \\ \frac{1}{m_2} F_x^{(2)}(X,t) \\ \frac{1}{m_2} F_y^{(2)}(X,t) \\ \frac{1}{m_2} F_z^{(2)}(X,t) \\ \vdots \end{pmatrix} \]

more generally, we can define \(X \) as a huge vector storing the current state of all particles in a system.

Questions?

https://www.youtube.com/watch?v=M-Hz9Za5mCE
MixPixVisuals, Mikael Bellander

Note: current state \(X \) can also include color & transparency. And \(f(X,t) \) can animate changes in these values over time!
Today

• Particle Systems
 – Equations of Motion (Physics)
 – Forces: Gravity, Spatial, Damping
 – Numerical Integration (Euler, Midpoint, etc.)
• Mass Spring System Examples
 – String, Hair, Cloth
• Stiffness
• Discretization

Forces: Gravity

• Simple gravity: depends only on particle mass

\[F_{ij} = \frac{G m_i m_j}{r^2} \]

• N-body problem: depends on all other particles
 – Magnitude inversely proportional to square distance
 – \(F_{ij} = G \frac{m_i m_j}{r^2} \)

Quickly gets impractical to compute analytically, and expensive to numerically approximate too!
Forces: Spatial Fields

- Force on particle i depends only on position of i
 - wind
 - attractors
 - repulsers
 - vortices
- Can depend on time (e.g., wind gusts)
- Note: these forces will generally add energy to the system, and thus may need damping…

Forces: Damping

\[
 f^{(i)} = -d v^{(i)}
\]

- Force on particle i depends only on velocity of i
- Force opposes motion
 - A hack mimicking real-world friction/drag
- Removes energy, so system can settle
- Small amount of damping can stabilize solver
- Too much damping makes motion too glue-like
Questions?

Today

• Particle Systems
 – Equations of Motion (Physics)
 – Forces: Gravity, Spatial, Damping
 – Numerical Integration (Euler, Midpoint, etc.)
• Mass Spring System Examples
 – String, Hair, Cloth
• Stiffness
• Discretization
Euler’s Method

- Examine $f(X,t)$ at (or near) current state
- Take a step of size h to new value of X:

$$t_1 = t_0 + h$$
$$X_1 = X_0 + hf(X_0, t_0)$$

$$X = \begin{pmatrix} x \\ v \end{pmatrix}, \quad f(X,t) = \begin{pmatrix} v \\ \frac{1}{m} F(x,v,t) \end{pmatrix}$$

- Piecewise-linear approximation to the curve

Effect of Step Size

- Step size controls accuracy
- Smaller steps more closely follow curve
- For animation, we may want to take many small steps per frame
 - How many frames per second for animation?
 - How many steps per frame?
Euler’s Method: Inaccurate

- Simple example: particle in stable circular orbit around planet (origin)
- Current velocity is always tangent to circle
- Force is perpendicular to circle
- Euler method will spiral outward no matter how small \(h \) is

Euler’s Method: Unstable

- Problem: \(f'(x, t) = -kx \)
- Solution: \(x(t) = x_0 e^{-kt} \)

- Limited step size:
 \[
 x_1 = x_0 (1 - hk)
 \]
 - \(h \leq 1/k \) ok
 - \(h > 1/k \) oscillates ±
 - \(h > 2/k \) explodes

- If \(k \) is big, \(h \) must be small
Analysis using Taylor Series

- Expand exact solution $X(t)$
 \[
 X(t_0 + h) = X(t_0) + h \left(\frac{d}{dt} X(t) \right)_{t_0} + \frac{h^2}{2!} \left(\frac{d^2}{dt^2} X(t) \right)_{t_0} + \frac{h^3}{3!} (\cdots) + \cdots
 \]

- Euler’s method:
 \[
 X(t_0 + h) = X_0 + h f(X_0, t_0) \quad \cdots + O(h^2) \text{error}
 \]

 \[
 h \to h/2 \Rightarrow \text{error} \to \text{error}/4 \text{ per step} \times \text{twice as many steps} \to \text{error}/2
 \]

- First-order method: Accuracy varies with h
 - To get 100x better accuracy need 100x more steps

Can we do better than Euler’s Method?

- Problem: f has varied along the step
- Idea: look at f at the arrival of the step and compensate for variation
2nd-Order Methods

- **Midpoint:**
 - \(\frac{1}{2} \) Euler step
 - evaluate \(f_m \)
 - full step using \(f_m \)

- **Trapezoid:**
 - Euler step (a)
 - evaluate \(f_1 \)
 - full step using \(f_1 \) (b)
 - average (a) and (b)

Midpoint & trapezoid do not yield exactly the same result, but they have same order of accuracy

Comparison: **Euler, Midpoint, Runge-Kutta**

- **initial position:** (1,0,0)
- **initial velocity:** (0,5,0)
- **force field:** pulls particles to origin with magnitude proportional to distance from origin
- **correct answer:** circle

Euler will always diverge (even with small dt)
Comparison: Euler, Midpoint, Runge-Kutta

- initial position: (0,-2,0)
- initial velocity: (1,0,0)
- force field: pulls particles to line y=0 with magnitude proportional to distance from line
- correct answer: sine wave

A 4th order method!

Decreasing the timestep (dt) improves the accuracy

Questions?

Image by Baraff, Witkin, Kass
Today

- Particle Systems
 - Equations of Motion (Physics)
 - Numerical Integration (Euler, Midpoint, etc.)
 - Forces: Gravity, Spatial, Damping
- Mass Spring System Examples
 - String, Hair, Cloth
- Stiffness
- Discretization

How would you simulate a string?

- Each particle is linked to two particles
- Forces try to keep the distance between particles constant
- What force?
Spring Forces

• Force in the direction of the spring and proportional to difference with rest length L_0

$$F(P_i, P_j) = K(L_0 - ||P_i - P_j||) \frac{P_i - P_j}{||P_i - P_j||}$$

• K is the stiffness of the spring
 – When K gets bigger, the spring really wants to keep its rest length

How would you simulate a string?

• Springs link the particles
• Springs try to keep their rest lengths and preserve the length of the string
• Problems?
 – Stretch, actual length will be greater than rest length
 – Numerical oscillation
How would you simulate hair?

• Similar to string…
• Also… to keep hair straight or curly
 – Add forces based on the angle between segments
 – Add additional springs/constraints stretching between the non-immediate neighbors

Cloth Modeled with Mass-Spring

• Network of masses and springs
• Structural springs:
 – link (i, j) & (i+1, j) and (i, j) & (i, j+1)
• Shear springs
 – link (i, j) & (i+1, j+1) and (i+1, j) & (i, j+1)
• Flexion (Bend) springs
 – link (i, j) & (i+2, j) and (i, j) & (i, j+2)
• Be careful not to index out of bounds on the cloth edges!
Reading for Today:

Simple mass-spring system

Improved solution

“Predicting the Drape of Woven Cloth Using Interacting Particles”

• Breen, House, and Wozny
• SIGGRAPH 1994

actual

virtual

100% Cotton Weave
Questions?

Interactive Animation of
Structured Deformable Objects
Desbrun, Schröder, & Barr 1999

Today

• Particle Systems
 – Equations of Motion (Physics)
 – Numerical Integration (Euler, Midpoint, etc.)
 – Forces: Gravity, Spatial, Damping
• Mass Spring System Examples
 – String, Hair, Cloth
• Stiffness
• Discretization
The Stiffness Issue

- What relative stiffness do we want for the different springs in the network?
- Cloth is barely elastic, shouldn’t stretch so much!
- Inverse relationship between stiffness & Δt
- We really want constraints (not springs)
- Many numerical solutions
 - reduce Δt
 - use constraints
 - implicit integration
 - …

How would you simulate a string?

- Springs link the particles. Problems?
 - Stretch, actual length will be greater than rest length
 - Numerical oscillation

- Rigid, fixed-length bars link the particles
 - Dynamics & Constraints
 (must be solved simultaneously non-trivial, even for tiny systems)

https://www.youtube.com/watch?v=AwT0k09w-jw
The Discretization Problem

• What happens if we discretize our cloth more finely, or with a different mesh structure?

![Discretization Examples]

• Do we get the same behavior?
 – Usually not! It takes a lot of effort to design a scheme that does not depend on the discretization.

• Using (explicit) Euler, how many timesteps before a force propagates across the mesh?

Explicit vs. Implicit Integration

• With an explicit/forward integration scheme:
 \[y_{k+1} = y_k + h \cdot g(y_k) \]
 we must use a very small timestep to simulate stable, stiff cloth.

• Alternatively we can use an implicit/backwards scheme:
 \[\begin{align*}
 y_{k+1} &= y_k + h \cdot g(y_{k+1}) \\
 y_k &= y_{k+1} - h \cdot g(y_{k+1})
 \end{align*} \]
 The future state of this particle depends on the current state AND the future state.

Solving one step is much more expensive (Newton’s Method, Conjugate Gradients, …) but overall faster than the thousands of explicit timesteps required for very stiff springs.

• Larger timesteps are possible with implicit methods.
Questions?

- Dynamic motion driven by animation

Cloth Collision

- A cloth has many points of contact
- Often stays in contact
- Requires
 - Efficient collision detection
 - Efficient numerical treatment (stability)
Cloth in Practice (w/ Animation)

OPTIONAL READING (pick one)

- Baraff, Witkin & Kass
 Untangling Cloth
 SIGGRAPH 2003

“FoldSketch: Enriching Garments with Physically Reproducible Folds”
Li, Sheffer, Grinspun, & Vining, SIGGRAPH 2018.

OPTIONAL READING (pick one)
“An Implicit Frictional Contact Solver for Adaptive Cloth Simulation”
Li, Daviet, Narain, Bertails-Descoubes, Overby, Brown, & Boissieux,
SIGGRAPH 2018.

OPTIONAL READING (pick one)

HW2: Cloth & Fluid Simulation