Ray Tracing

Velocity Interpolation

• In 2D: For each axis, find the 4 closest face velocity samples:
 • (In 3D… Find 8 closest face velocities in each dimension)

\[u_k = A_0 u_0 + A_1 u_1 + A_2 u_2 + A_3 u_3 \]
Bilinear Interpolation

- It might be simplest to think about one axis at a time
- It doesn’t matter which axis you start with!

- Calculate u, the fraction of the distance along the horizontal axis, e.g., $u=0.65$
- Then calculate the top & bottom averages:
 - orange = $(1-u)\times$red + $u\times$yellow
 - bluegreen = $(1-u)\times$cyan + $u\times$green

- Calculate v, the fraction of the distance along the vertical axis, e.g., $v=0.6$
- Then calculate the final average:
 - pukegreen = $(1-v)\times$bluegreen + $v\times$orange

http://reedbeta.com/blog/quadrilateral-interpolation-part-2/

Last Time?

- Keyframing
- Procedural Animation
- Physically-Based Animation
- Forward and Inverse Kinematics
- Motion Capture

Two solutions
Inverse Kinematics (IK)

- Given the position of the effector in local coordinates V_l and the desired position V_w in world coordinates, what are the skeleton parameters p?
- Much harder requires solving the inverse of the non-linear function:

$$\text{find } p \text{ such that } S(p)V_l = V_w$$

Why is this hard? Why is it non-linear?

Under-/Over- Constrained IK

- Application: Robot Motion Planning

No solutions

One solution

Two solutions (2D)

Many solutions

"The good-looking textured light-sourced bouncy fun smart and stretchy page"
Hugo Elias, http://freespace.virgin.net/hugo.elias/models/m_ik.htm
Searching Configuration Space

• Use gradient descent to walk from starting configuration to target
• Angle restrictions & collisions can introduce local minima

“The good-looking textured light-sourced bouncy fun smart and stretchy page”
Hugo Elias, http://freespace.virgin.net/hugo.elias/models/m_ik2.htm

IK Challenge

• Find a “natural” skeleton configuration for a given collection of pose constraints
• A vector constraint function $C(p) = 0$ collects all pose constraints
• A scalar objective function $g(p)$ measures the quality of a pose, $g(p)$ is minimum for most natural poses.
Example $g(p)$:
 – deviation from natural pose
 – joint stiffness
 – power consumption

Force: \(\text{Newton (N)} = \text{kg} \times \text{m} / \text{s}^2 \)
Work: \(\text{Joule (J)} = \text{N} \times \text{m} = \text{kg} \times \text{m}^2 / \text{s}^2 \)
Power: \(\text{Watt (W)} = \text{J/s} = \text{kg} \times \text{m}^2 / \text{s}^3 \)
Questions?

Figure 8: Spacetime constraints: a cartoonist’s view. (c) 1988 by Laura Green, used by permission.

“Spacetime Constraints”, Witkin & Kass, SIGGRAPH 1988

Reading for Today: (pick one)

• “Real-Time Hand-Tracking with a Color Glove” SIGGRAPH 2009, Wang & Popović
Rapid prototyping of realistic character motion from rough low-quality animations

Obey the laws of physics & stay within space of naturally-occurring movements

Reading for Today: (pick one)

“Synthesis of Complex Dynamic Character Motion from Simple Animation”, Liu & Popović, 2002

Reading for Today: (pick one)

“Flexible Muscle-Based Locomotion for Bipedal Creatures”, Geijtenbeek, van de Panne, van der Stappen, SIGGRAPH Asia 2013

Figure 1: Physics-based simulation of locomotion for a variety of creatures driven by 3D muscle-based control. The synthesized controllers can locomote in real time at a range of speeds, be steered to a target heading, and can traverse variable terrain.
Today

- Ray Casting
 - Ray-Plane Intersection
 - Ray-Sphere Intersection
 - Point in Polygon
- Ray Tracing
- Recursive Ray Tracing
- Distribution Ray Tracing

Durer’s Ray Casting Machine

- Albrecht Durer, 16th century
Ray Casting

For every pixel
Construct a ray from the eye
For every object in the scene
 Find \textit{intersection} with the ray
 Keep if closest
Shade depending on light and normal vector

Finding the intersection and normal is the central part of ray casting

A Note on \textit{Local} Shading

- Surface/Scene Characteristics:
 - surface normal
 - direction to light
 - viewpoint
- Material Properties
 - color/texture
 - diffuse (matte)
 - specular (shiny)
 - …
- More later!

\textit{Diffuse sphere} \quad \textit{Specular spheres}
Ray Representation?

- Two vectors:
 - Origin
 - Direction (normalized is better)
- Parametric line *(explicit representation)*
 - \(P(t) = \text{origin} + t \times \text{direction} \)

3D Plane Representation?

- Plane defined by
 - \(\text{P}_o = (x,y,z) \)
 - \(n = (A,B,C) \)
- *Implicit* plane equation
 - \(H(P) = Ax+By+Cz+D = 0 \)
 - \(= n \cdot P + D = 0 \)
- Point-Plane distance?
 - If \(n \) is normalized,
 - distance to plane, \(d = H(P) \)
 - \(d \) is the *signed distance*!
Explicit vs. Implicit?

• Ray equation is explicit \(P(t) = R_o + t \cdot R_d \)
 – Parametric
 – Generates points
 – Harder to verify that a point is on the ray

• Plane equation is implicit \(H(P) = n \cdot P + D = 0 \)
 – Solution of an equation
 – Does not generate points
 – Verifies that a point is on the plane

Ray-Plane Intersection

• Intersection means both are satisfied
• So, insert explicit equation of ray into implicit equation of plane & solve for \(t \)

\[
P(t) = R_o + t \cdot R_d \\
H(P) = n \cdot P + D = 0 \\
n \cdot (R_o + t \cdot R_d) + D = 0 \\
t = -(D + n \cdot R_o) / n \cdot R_d
\]
Additional Housekeeping

- Verify that intersection is closer than previous
 \[P(t) < t_{\text{current}} \]
- Verify that it is not out of range (behind eye)
 \[P(t) > t_{\text{min}} \]

Normal at Surface Intersection

- Needed for shading
 - diffuse: dot product between light and normal
- Normal of a plane is constant!
Ray-Triangle Intersection

- Intersect with the plane...
- Then use barycentric coordinates:
 - \(P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c \)
 with \(\alpha + \beta + \gamma = 1 \)
 - If \(0 < \alpha < 1 \) & \(0 < \beta < 1 \) & \(0 < \gamma < 1 \)
 then the point is inside the triangle!

How Do We Compute \(\alpha, \beta, \gamma \) ?

- Ratio of opposite sub-triangle area to total area
 - \(\alpha = A_a / A \) \(\beta = A_b / A \) \(\gamma = A_c / A \)
- Use signed areas for points outside the triangle

But how do I know if the point is outside the triangle?

That’s what I was trying to determine!
Using Cramer’s Rule…

- Used to solve for one variable at a time in system of equations

\[
\beta = \frac{\begin{vmatrix}
a_x - R_{ox} & a_x - c_x & R_{dx} \\
a_y - R_{oy} & a_y - c_y & R_{dy} \\
a_z - R_{oz} & a_z - c_z & R_{dz}
\end{vmatrix}}{|A|} \\
\gamma = \frac{\begin{vmatrix}
a_x - b_x & a_x - R_{ox} & R_{dx} \\
a_y - b_y & a_y - R_{oy} & R_{dy} \\
a_z - b_z & a_z - R_{oz} & R_{dz}
\end{vmatrix}}{|A|}
\]

- Can be copied mechanically into code

Sphere Representation?

- Implicit sphere equation
 - Assume centered at origin (easy to translate)
 - \(H(P) = P \cdot P - r^2 = 0 \)
Ray-Sphere Intersection

• Insert explicit equation of ray into implicit equation of sphere & solve for t

\[P(t) = R_o + tR_d \]

\[H(P) = P \cdot P - r^2 = 0 \]

\[(R_o + tR_d) \cdot (R_o + tR_d) - r^2 = 0 \]

\[R_d \cdot R_d t^2 + 2R_d \cdot R_o t + R_o \cdot R_o - r^2 = 0 \]

Ray-Sphere Intersection

• Quadratic: \(at^2 + bt + c = 0 \)
 – \(a = 1 \) (remember, \(||R_d|| = 1 \))
 – \(b = 2R_d \cdot R_o \)
 – \(c = R_o \cdot R_o - r^2 \)

• with discriminant

\[d = \sqrt{b^2 - 4ac} \]

• and solutions

\[t_{\pm} = \frac{-b \pm d}{2a} \]

• What does it mean if there are no solutions, 1 solution, or 2 solutions?
Questions?

depth
normals
local shading

Reading for Next Time *(read both)*

Today

• Ray Casting
• Ray Tracing
 – Shadows
 – Reflection
 – Refraction
• Recursive Ray Tracing
• Distribution Ray Tracing

How Can We Add Shadows?

Find the point to be shaded
For every light,
 Construct ray from point to light
 For every object
 find intersection of ray with object
 If no objects between point and light
 Add contribution from light
Mirror Reflection

- Cast ray symmetric with respect to the normal
- Multiply by reflection coefficient (color)

Reflection

- Reflection angle = view angle
- \(\mathbf{R} = \mathbf{V} - 2 (\mathbf{V} \cdot \mathbf{N}) \mathbf{N} \)
Transparency

- Cast ray in refracted direction
- Multiply by transparency coefficient (color)

Qualitative Refraction

From “Color and Light in Nature” by Lynch and Livingston
Refraction

\[
I = N \cos \theta_i - M \sin \theta_i
\]
\[
M = (N \cos \theta_i - I) / \sin \theta_i
\]
\[
T = -N \cos \theta_T + M \sin \theta_T
\]
\[
= -N \cos \theta_T + (N \cos \theta_i - I) \sin \theta_T / \sin \theta_i
\]
\[
= -N \cos \theta_T + (N \cos \theta_i - I) \eta_r
\]
\[
= [\eta_i \cos \theta_i - \eta_T \cos \theta_T] N - \eta_r I
\]
\[
= [\eta_i \cos \theta_i - \sqrt{1 - \sin^2 \theta_T}] N - \eta_r I
\]
\[
= [\eta_i \cos \theta_i - \sqrt{1 - \eta_r^2 \sin^2 \theta_i}] N - \eta_r I
\]
\[
= [\eta_i (N \cdot I) - \sqrt{1 - \eta_r^2 (1 - (N \cdot I)^2)}] N - \eta_r I
\]

- Total internal reflection when the square root is imaginary
- Don’t forget to normalize!

Refraction & the Sidedness of Objects

- Make sure you know whether you’re entering or leaving the transmissive material:

\[
\eta_i = \text{material index}
\]
\[
\eta_T = 1
\]

- What about intersecting transparent objects?
Total Internal Reflection

Fig. 3.7A The optical manhole. From under water, the entire celestial hemisphere is compressed into a circle only 97.2” across. The dark boundary defining the edges of the manhole is not sharp due to surface waves. The rays are analogous to the crepuscular type seen in hazy air. Section 1.9. (Photo by D. Granger)

Fig. 3.7B The optical manhole. Light from the horizon (angle of incidence = 90°) is refracted downward at an angle of 48.6°. This compresses the sky into a circle with a diameter of 97.2” instead of its usual 180”.

From “Color and Light in Nature” by Lynch and Livingston

Today

• Ray Casting
• Ray Tracing
• Recursive Ray Tracing
• Distribution Ray Tracing
Ray Tracing

trace ray
- Intersect all objects
 - color = ambient term
- For every light
 - cast shadow ray
 - color += local shading term
 - If mirror
 - color += color_refl * trace reflected ray
 - If transparent
 - color += color_trans * trace transmitted ray

Does it ever end?

Stopping criteria:
- **Recursion depth**
 - Stop after a number of bounces
- **Ray contribution**
 - Stop if reflected / transmitted contribution becomes too small

The Ray Tree

N_i surface normal
R_i reflected ray
L_i shadow ray
T_i transmitted (refracted) ray

Complexity?
Ray Debugging

• Visualize the ray tree for single image pixel

Reading for Next Time (read both)

Today

- Ray Casting
- Ray Tracing
- Recursive Ray Tracing
- Distribution Ray Tracing
 - Soft shadows
 - Antialiasing (getting rid of jaggies)
 - Glossy reflection
 - Motion blur
 - Depth of field (focus)

Shadows

- one shadow ray per intersection per point light source
Shadows & Light Sources

Soft Shadows

- multiple shadow rays to sample area light source

area light source

penumbra

umbra

penumbra

one shadow

lots of shadow
Antialiasing – Supersampling

- multiple rays per pixel

 ![jaggies](image1)
 ![w/ antialiasing](image2)

 ![point light](image3)
 ![area light](image4)

Reflection

- one reflection ray per intersection

 ![perfect mirror](image5)
Glossy Reflection

• multiple reflection rays

Motion Blur

• Sample objects temporally
Depth of Field

- multiple rays per pixel

Ray Tracing Algorithm Analysis

- Ray casting
- Lots of primitives
- Recursive
- Distributed Ray Tracing Effects
 - Soft shadows
 - Anti-aliasing
 - Glossy reflection
 - Motion blur
 - Depth of field

Cost approximation:
\[\text{cost} \approx \text{height} \times \text{width} \times \text{num primitives} \times \text{intersection cost} \times \text{size of recursive ray tree} \times \text{num shadow rays} \times \text{num supersamples} \times \text{num glossy rays} \times \text{num temporal samples} \times \text{num focal samples} \times \ldots \]

Can we reduce this?

These can serve double duty