
CSCI-4530/6530
Advanced Computer Graphics

1

Barb Cutler
cutler@cs.rpi.edu

Luxo Jr.

2

Pixar Animation Studios, 1986

Topics for the Semester
• Meshes

– representation
– simplification
– subdivision surfaces
– construction/generation
– volumetric modeling

• Simulation
– particle systems, cloth
– rigid body, deformation
– wind/water flows
– collision detection
– weathering

3

• Rendering
– ray tracing, shadows
– appearance models
– local vs. global

illumination
– radiosity, photon

mapping, subsurface
scattering, etc.

• procedural modeling
• texture synthesis
• non-photorealistic

rendering
• hardware & more …

Mesh Simplification

4

Hoppe “Progressive Meshes” SIGGRAPH 1996

Mesh Generation & Volumetric Modeling

5

Cutler et al., “Simplification and Improvement
of Tetrahedral Models for Simulation” 2004

Modeling – Subdivision Surfaces

6

Hoppe et al., “Piecewise Smooth
Surface Reconstruction” 1994

Geri’s Game
Pixar 1997

Particle Systems

7Star Trek: The Wrath of Khan 1982

Physical Simulation
• Rigid Body Dynamics
• Collision Detection
• Fracture
• Deformation

8

Müller et al., “Stable Real-Time
Deformations” 2002

Fluid Dynamics

9

Foster & Mataxas, 1996

“Visual Simulation of Smoke”
Fedkiw, Stam & Jensen

SIGGRAPH 2001

Ray Casting/Tracing

10

“An Improved Illumination
Model for Shaded Display”

Whitted 1980

• For every pixel
– Construct a ray from the eye
– For every object in the scene

• Find intersection with the ray
• Keep the closest

• Shade (interaction of
light and material)

• Secondary rays
(shadows,
reflection,
refraction)

Appearance Models

11

θiθr

φi φ
r

Henrik Wann Jensen

Wojciech Matusik

Subsurface Scattering

12

Surface

Jensen et al.,
“A Practical Model for

Subsurface Light Transport”
SIGGRAPH 2001

Syllabus & Course Website
http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S21/

• Which version should I register for?
CSCI 6530 : 4 units of graduate credit
CSCI 4530 : 4 units of undergraduate credit

• This is an intensive course aimed at graduate
students and undergraduates interested in
graphics research, involving significant reading
& programming each week. Taking this course
in a 5 course / overload semester is discouraged.

13

Grades

• This course counts as “communications intensive”
for undergraduates. As such, you must satisfactorily
complete all readings, presentations, project reports
to pass the course.

• As this is an elective (not required) course, I expect to
grade this course: “A”, “A-”, “B+”, “B”, “B-”, or “F”
– Don’t expect C or D level work to “pass”
– I don’t want to give any “F”s

14

Lecture Attendance/Participation

• Lecture will be discussion-intensive
– We will discuss research papers
– We will do worksheets in groups of 2 or 3

• You are expected to regularly attend and
participate in the live lecture
– Lecture will be recorded & posted on Mediasite
– If time zones or technical problems force you to

miss more than a couple lectures, please contact
me ASAP

15

Questions?

17

Outline
• Course Overview
• Classes of Transformations
• Representing Transformations
• Combining Transformations
• Orthographic & Perspective Projections
• Example: Iterated Function Systems (IFS)

18

What is a Transformation?
• Maps points (x, y) in one coordinate system to

points (x', y') in another coordinate system

• For example, Iterated Function System (IFS):

x' = ax + by + c
y' = dx + ey + f

19

Simple Transformations

Yes, except scale = 0

● Can be combined
● Are these operations invertible?

20

Transformations are used to:
• Position objects in a scene
• Change the shape of objects
• Create multiple copies of objects
• Projection for virtual cameras
• Describe

animations

21

Rigid-Body / Euclidean Transforms

• Preserves distances
• Preserves angles

Translation
Rotation

Rigid / Euclidean

Identity

22

Similitudes / Similarity Transforms

• Preserves angles

Translation
Rotation

Rigid / Euclidean

Similitudes

Isotropic Scaling
Identity

23

Linear Transformations

Translation
Rotation

Rigid / Euclidean
Linear

Similitudes

Isotropic Scaling
Identity

Scaling

Shear

Reflection

L(p + q) = L(p) + L(q) L(ap) = a L(p)

24

Affine Transformations
• preserves

parallel lines

Translation
Rotation

Rigid / Euclidean
Linear

Similitudes

Isotropic Scaling

Scaling

Shear

Reflection
Identity

Affine

25

Projective Transformations
• preserves lines

Translation
Rotation

Rigid / Euclidean
Linear

Affine

Projective

Similitudes

Isotropic Scaling

Scaling

Shear

Reflection

Perspective

Identity

General (Free-Form) Transformation
• Does not preserve lines
• Not as pervasive, computationally more involved

26
Sederberg and Parry, Siggraph 1986

27

Outline
• Course Overview
• Classes of Transformations
• Representing Transformations
• Combining Transformations
• Orthographic & Perspective Projections
• Example: Iterated Function Systems (IFS)

28

How are Transforms Represented?

x' = ax + by + c
y' = dx + ey + f

x'
y'

a b
d e

c
f

=
x
y

+

p' = M p + t

29

Homogeneous Coordinates
• Add an extra dimension

• in 2D, we use 3 x 3 matrices
• In 3D, we use 4 x 4 matrices

• Each point has an extra value, w

x'
y'
z'
w'

=

x
y
z
w

a
e
i
m

b
f
j
n

c
g
k
o

d
h
l
p

p' = M p

30

Translation in homogeneous coordinates

x' = ax + by + c
y' = dx + ey + f

x'
y'
1

a b
d e
0 0

c
f
1

=
x
y
1

p' = M p

x'
y'

a b
d e

c
f

=
x
y

+

p' = M p + t

Affine formulation Homogeneous formulation

31

Homogeneous Coordinates
• Most of the time w = 1, and we can ignore it

• If we multiply a homogeneous coordinate
by an affine matrix, w is unchanged

x'
y'
z'
1

=

x
y
z
1

a
e
i
0

b
f
j
0

c
g
k
0

d
h
l
1

32

Homogeneous Visualization
• Divide by w to normalize (homogenize)
• W = 0?

w = 1

w = 2

(0, 0, 1) = (0, 0, 2) = …
(7, 1, 1) = (14, 2, 2) = …
(4, 5, 1) = (8, 10, 2) = …

Point at infinity (direction)

33

Translate (tx, ty, tz)
• Why bother with the

extra dimension?
Because now translations
can be encoded in the matrix!

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
1
0

tx

ty

tz

1

Translate(c,0,0)

x

y

p p'

c

x'
y'
z'
1

34

Scale (sx, sy, sz)
• Isotropic (uniform)

scaling: sx = sy = sz

x'
y'
z'
1

=

x
y
z
1

sx

0
0
0

0
sy

0
0

0
0
sz

0

0
0
0
1

Scale(s,s,s)

x

p

p'

q
q'

y

35

Rotation
• About z axis

x'
y'
z'
1

=

x
y
z
1

cos θ
sin θ

-sin θ
 cos θ

0
0
1
0

0
0
0
1

ZRotate(θ)

x

y

z

p

p'

θ

0
0

0
0

36

Rotation
• About (kx, ky, kz), a unit

vector on an arbitrary axis
(Rodrigues Formula)

x'
y'
z'
1

=

x
y
z
1

kxkx(1-c)+c
kykx(1-c)+kzs
kzkx(1-c)-kys

0

0
0
0
1

 kzkx(1-c)-kzs
kzkx(1-c)+c
kzkx(1-c)-kxs

0

 kxkz(1-c)+kys
kykz(1-c)-kxs
kzkz(1-c)+c

0

where c = cos θ & s = sin θ

Rotate(k, θ)

x

y

z

θ

k

37

Storage
• Often, w is not stored (always 1)
• Needs careful handling of direction vs. point

– Mathematically, the simplest is to encode
directions with w = 0

– In terms of storage, using a 3-component array
for both direction and points is more efficient

– Which requires to have special operation routines
for points vs. directions

38

Outline
• Course Overview
• Classes of Transformations
• Representing Transformations
• Combining Transformations
• Orthographic & Perspective Projections
• Example: Iterated Function Systems (IFS)

39

How are transforms combined?

(0,0)
(1,1)

(2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

TS =
2
0

0
2

0
0

1
0

0
1

3
1

2
0

0
2

3
1=

Scale then Translate

Use matrix multiplication: p' = T (S p) = TS p

Caution: matrix multiplication is NOT commutative!

0 0 1 0 0 1 0 0 1

40

Non-commutative Composition
Scale then Translate: p' = T (S p) = TS p

Translate then Scale: p' = S (T p) = ST p

(0,0)

(1,1)
(4,2)

(3,1)

(8,4)

(6,2)

(0,0)
(1,1)

(2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

Translate(3,1) Scale(2,2)

41

TS =
2
0
0

0
2
0

0
0
1

1
0
0

0
1
0

3
1
1

ST =
2
0

0
2

0
0

1
0

0
1

3
1

Non-commutative Composition
Scale then Translate: p' = T (S p) = TS p

2
0
0

0
2
0

3
1
1

2
0

0
2

6
2

=

=

Translate then Scale: p' = S (T p) = ST p

0 0 1 0 0 1 0 0 1

Worksheet!

Write down the 3x3 matrix that transforms this set of 4
points:

 A: (0,0) B: (1,0) C: (1,1) D: (0,1)

to these new positions:
 A’: (-1, 1) B’: (-1, 0) C’: (0, 0) D’: (0, 1)

Show your work.

If you finish early…
Solve the problem using a different technique.

WebEx Breakout Sessions
(teams of 2 or 3)

Team upload to Submitty

NOTE: We’ll be doing pair worksheets
throughout the term. We’ll randomize the groups

so you work with lots of different partners.

43

Outline
• Course Overview
• Classes of Transformations
• Representing Transformations
• Combining Transformations
• Orthographic & Perspective Projections
• Example: Iterated Function Systems (IFS)

44

Orthographic vs. Perspective
• Orthographic

• Perspective

45

Simple Orthographic Projection
• Project all points along the z axis to the z = 0 plane

x
y
0
1

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
0
0

0
0
0
1

46

• Project all points along the z axis to the z = d plane,
eyepoint at the origin:

Simple Perspective Projection

x
y
z

z / d

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
1

1/d

0
0
0
0

x * d / z
y * d / z

d
1

=

homogenize

By similar triangles:
 x’/x = d/z
 x’ = (x*d)/z (x’,y’,z’)

’

47

Alternate Perspective Projection
• Project all points along the z axis to the z = 0 plane,

eyepoint at the (0,0,-d):

x
y
0

(z + d)/ d

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
0

1/d

0
0
0
1

x * d / (z + d)
y * d / (z + d)

0
1

=

homogenize
(x’,y’,z’)

By similar triangles:
 x’/x = d/(z+d)
 x’ = (x*d)/(z+d)

48

In the limit, as d → ∞

1
0
0
0

0
1
0
0

0
0
0

1/d

0
0
0
1

1
0
0
0

0
1
0
0

0
0
0
0

0
0
0
1

→

...is simply an
orthographic projection

this perspective
projection matrix...

Outline
• Course Overview
• Classes of Transformations
• Representing Transformations
• Combining Transformations
• Orthographic & Perspective Projections
• Example: Iterated Function Systems (IFS)

49

50

Iterated Function Systems (IFS)

• Capture self-similarity
• Contraction

(reduce distances)
• An attractor is a

fixed point

51

Example: Sierpinski Triangle
• Described by a set of n affine transformations
• In this case, n = 3

– translate & scale by 0.5

52

Example: Sierpinski Triangle
for “lots” of random input points (x0, y0)

for j=0 to num_iters
randomly pick one of the transformations
(xk+1, yk+1) = fi (xk, yk)

display (xk, yk)

Increasing the number of iterations

53

Another IFS: The Dragon

54

3D IFS in OpenGL / Apple Metal

55

Assignment 0: OpenGL/Metal Warmup

• Get familiar with:
– C++ environment
– OpenGL / Metal
– Transformations
– simple Vector &

Matrix classes

• Have Fun!
• Due ASAP (start it today!)
• ¼ of the points of the other HWs

(but you should still do it and submit it!)

56

Questions?

Image by Henrik Wann Jensen

57

For Next Time:
• Read Hugues Hoppe “Progressive Meshes”

SIGGRAPH 1996
• Everyone will a comment or question on the

course Submitty discussion forum before
10am on Friday

We need 4 volunteers to be “Discussants”
Note: This is not a “presentation”. Don’t make slides!
Be sure to read blurb (& linked webpage) on course
webpage about Assigned Readings & Discussants.

58

• How do we represent meshes?
• How to automatically decide what parts of the

mesh are important / worth preserving?
• Algorithm performance: memory, speed?
• What were the original target applications?

Are those applications still valid?
Are there other modern applications that
can leverage this technique?

Questions to think about:

