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Topics for the Semester
• Meshes

– representation
– simplification
– subdivision surfaces
– construction/generation
– volumetric modeling

• Simulation
– particle systems, cloth
– rigid body, deformation
– wind/water flows
– collision detection
– weathering
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• Rendering
– ray tracing, shadows
– appearance models
– local vs. global 

illumination
– radiosity, photon 

mapping, subsurface 
scattering, etc. 

• procedural modeling
• texture synthesis
• non-photorealistic 

rendering 
• hardware & more …

Mesh Simplification
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Hoppe “Progressive Meshes” SIGGRAPH 1996



Mesh Generation & Volumetric Modeling
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Cutler et al., “Simplification and Improvement 
of Tetrahedral Models for Simulation”  2004

Modeling – Subdivision Surfaces
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Hoppe et al., “Piecewise Smooth 
Surface Reconstruction” 1994

Geri’s Game 
Pixar 1997



Particle Systems

7Star Trek: The Wrath of Khan 1982

Physical Simulation
• Rigid Body Dynamics
• Collision Detection
• Fracture
• Deformation
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Müller et al., “Stable Real-Time 
Deformations” 2002



Fluid Dynamics
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Foster & Mataxas, 1996

“Visual Simulation of Smoke”
Fedkiw, Stam & Jensen 

SIGGRAPH 2001

Ray Casting/Tracing
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“An Improved Illumination 
Model for Shaded Display”

Whitted 1980

• For every pixel
– Construct a ray from the eye 
– For every object in the scene

• Find intersection with the ray 
• Keep the closest

• Shade (interaction of 
light and material)

• Secondary rays 
(shadows, 
reflection, 
refraction)



Appearance Models
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Henrik Wann Jensen

Wojciech Matusik

Subsurface Scattering
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Surface

Jensen et al., 
“A Practical Model for 

Subsurface Light Transport”  
SIGGRAPH 2001



Syllabus & Course Website
http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S21/

• Which version should I register for?
CSCI 6530  :  4 units of graduate credit
CSCI 4530  :  4 units of undergraduate credit

• This is an intensive course aimed at graduate 
students and undergraduates interested in 
graphics research, involving significant reading 
& programming each week.  Taking this course 
in a 5 course / overload semester is discouraged.
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Grades

• This course counts as “communications intensive” 
for undergraduates.  As such, you must satisfactorily 
complete all readings, presentations, project reports 
to pass the course.

• As this is an elective (not required) course, I expect to 
grade this course: “A”, “A-”, “B+”, “B”, “B-”, or “F”
– Don’t expect C or D level work to “pass”
– I don’t want to give any “F”s
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Lecture Attendance/Participation

• Lecture will be discussion-intensive
– We will discuss research papers
– We will do worksheets in groups of 2 or 3

• You are expected to regularly attend and 
participate in the live lecture
– Lecture will be recorded & posted on Mediasite
– If time zones or technical problems force you to 

miss more than a couple lectures, please contact 
me ASAP
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Questions?
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Outline
• Course Overview
• Classes of Transformations
• Representing Transformations
• Combining Transformations
• Orthographic & Perspective Projections 
• Example: Iterated Function Systems (IFS)
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What is a Transformation?
• Maps points (x, y) in one coordinate system to 

points (x', y') in another coordinate system

• For example, Iterated Function System (IFS):

x' = ax + by + c
y' = dx + ey + f
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Simple Transformations

Yes, except scale = 0

● Can be combined
● Are these operations invertible?
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Transformations are used to:
• Position objects in a scene
• Change the shape of objects
• Create multiple copies of objects
• Projection for virtual cameras
• Describe 

animations
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Rigid-Body / Euclidean Transforms 

• Preserves distances
• Preserves angles

Translation
Rotation

Rigid / Euclidean

Identity
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Similitudes / Similarity Transforms

• Preserves angles

Translation
Rotation

Rigid / Euclidean

Similitudes

Isotropic Scaling
Identity
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Linear Transformations

Translation
Rotation

Rigid / Euclidean
Linear

Similitudes

Isotropic Scaling
Identity

Scaling

Shear

Reflection

L(p + q) = L(p) + L(q)              L(ap) = a L(p)
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Affine Transformations
• preserves 

parallel lines

Translation
Rotation

Rigid / Euclidean
Linear

Similitudes

Isotropic Scaling

Scaling

Shear

Reflection
Identity

Affine
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Projective Transformations
• preserves lines

Translation
Rotation

Rigid / Euclidean
Linear

Affine

Projective

Similitudes

Isotropic Scaling

Scaling

Shear

Reflection

Perspective

Identity

General (Free-Form) Transformation
• Does not preserve lines
• Not as pervasive, computationally more involved

26
Sederberg and Parry, Siggraph 1986
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Outline
• Course Overview
• Classes of Transformations
• Representing Transformations
• Combining Transformations
• Orthographic & Perspective Projections 
• Example: Iterated Function Systems (IFS)
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How are Transforms Represented?

x' = ax + by + c
y' = dx + ey + f

x'
y'

a    b
d    e

c
f

=
x
y

+

p'   =      M p    +   t
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Homogeneous Coordinates
• Add an extra dimension

• in 2D, we use 3 x 3 matrices
• In 3D, we use 4 x 4 matrices

• Each point has an extra value, w

x'
y'
z'
w'

=

x
y
z
w

a
e
i
m

b
f
j
n

c
g
k
o

d
h
l
p

p'  =            M p
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Translation in homogeneous coordinates

x' = ax + by + c
y' = dx + ey + f

x'
y'
1

a    b
d    e
0  0

c
f
1

=
x
y
1

p'   =      M p

x'
y'

a    b
d    e

c
f

=
x
y

+

p'   =      M p    +   t

Affine formulation Homogeneous formulation
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Homogeneous Coordinates
• Most of the time w = 1, and we can ignore it

• If we multiply a homogeneous coordinate 
by an affine matrix, w is unchanged

x'
y'
z'
1

=

x
y
z
1

a
e
i
0

b
f
j
0

c
g
k
0

d
h
l
1
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Homogeneous Visualization
• Divide by w to normalize (homogenize)
• W = 0?  

w = 1

w = 2

(0, 0, 1) = (0, 0, 2) = …
(7, 1, 1) = (14, 2, 2) = …
(4, 5, 1) = (8, 10, 2) = …

Point at infinity (direction)
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Translate (tx, ty, tz)
• Why bother with the 

extra dimension?
Because now translations 
can be encoded in the matrix!

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
1
0

tx

ty

tz

1

Translate(c,0,0)

x

y

p p'

c

x'
y'
z'
1
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Scale (sx, sy, sz)
• Isotropic (uniform) 

scaling:  sx = sy = sz

x'
y'
z'
1

=

x
y
z
1

sx

0
0
0

0
sy

0
0

0
0
sz

0

0
0
0
1

Scale(s,s,s)

x

p

p'

q
q'

y
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Rotation
• About z axis

x'
y'
z'
1

=

x
y
z
1

cos θ
sin θ

-sin θ
 cos θ

0
0
1
0

0
0
0
1

ZRotate(θ)

x

y

z

p

p'

θ

0
0

0
0
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Rotation
• About (kx, ky, kz), a unit 

vector on an arbitrary axis
(Rodrigues Formula)

x'
y'
z'
1

=

x
y
z
1

kxkx(1-c)+c
kykx(1-c)+kzs
kzkx(1-c)-kys

0

0
0
0
1

 kzkx(1-c)-kzs
kzkx(1-c)+c
kzkx(1-c)-kxs

0

 kxkz(1-c)+kys
kykz(1-c)-kxs
kzkz(1-c)+c

0

where   c = cos θ   &   s = sin θ 

Rotate(k, θ)

x

y

z

θ

k
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Storage
• Often, w is not stored (always 1)
• Needs careful handling of direction vs. point

– Mathematically, the simplest is to encode 
directions with w = 0

– In terms of storage, using a 3-component array 
for both direction and points is more efficient

– Which requires to have special operation routines 
for points vs. directions
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Outline
• Course Overview
• Classes of Transformations
• Representing Transformations
• Combining Transformations
• Orthographic & Perspective Projections 
• Example: Iterated Function Systems (IFS)



39

How are transforms combined?

(0,0)
(1,1)

(2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

TS  =
2
0

0
2

0
0

1
0

0
1

3
1

2
0

0
2

3
1=

Scale then Translate

Use matrix multiplication:   p'  =  T ( S p )  =  TS p

Caution: matrix multiplication is NOT commutative!

0 0 1 0 0 1 0 0 1
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Non-commutative Composition
Scale then Translate:   p'  =  T ( S p )  =  TS p

Translate then Scale:   p'  =  S ( T p )  =  ST p

(0,0)

(1,1)
(4,2)

(3,1)

(8,4)

(6,2)

(0,0)
(1,1)

(2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

Translate(3,1) Scale(2,2)
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TS  =
2
0
0

0
2
0

0
0
1

1
0
0

0
1
0

3
1
1

ST  =
2
0

0
2

0
0

1
0

0
1

3
1

Non-commutative Composition
Scale then Translate:   p'  =  T ( S p )  =  TS p

2
0
0

0
2
0

3
1
1

2
0

0
2

6
2

=

=

Translate then Scale:   p'  =  S ( T p )  =  ST p

0 0 1 0 0 1 0 0 1

Worksheet!  

Write down the 3x3 matrix that transforms this set of 4 
points:

     A: (0,0)          B: (1,0)          C: (1,1)          D: (0,1)

to these new positions:
     A’: (-1, 1)       B’: (-1, 0)       C’: (0, 0)        D’: (0, 1)

Show your work.

If you finish early…  
Solve the problem using a different technique. 

WebEx Breakout Sessions 
(teams of 2 or 3)

Team upload to Submitty

NOTE:  We’ll be doing pair worksheets 
throughout the term.  We’ll randomize the groups 

so you work with lots of different partners.
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Outline
• Course Overview
• Classes of Transformations
• Representing Transformations
• Combining Transformations
• Orthographic & Perspective Projections 
• Example: Iterated Function Systems (IFS)
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Orthographic vs. Perspective
• Orthographic

• Perspective
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Simple Orthographic Projection
• Project all points along the z axis to the z = 0 plane

x
y
0
1

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
0
0

0
0
0
1
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• Project all points along the z axis to the z = d plane, 
eyepoint at the origin:

Simple Perspective Projection

x
y
z

z / d

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
1

1/d

0
0
0
0

x * d / z
y * d / z

d
1

=

homogenize

By similar triangles:
       x’/x = d/z
          x’ = (x*d)/z (x’,y’,z’)

’
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Alternate Perspective Projection
• Project all points along the z axis to the z = 0 plane, 

eyepoint at the (0,0,-d):

x
y
0

(z + d)/ d 

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
0

1/d

0
0
0
1

x * d / (z + d)
y * d / (z + d)

0
1

=

homogenize
(x’,y’,z’)

By similar triangles:
       x’/x = d/(z+d)
          x’ = (x*d)/(z+d)
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In the limit, as d → ∞

1
0
0
0

0
1
0
0

0
0
0

1/d

0
0
0
1

1
0
0
0

0
1
0
0

0
0
0
0

0
0
0
1

→

...is simply an 
orthographic projection

this  perspective 
projection matrix...



Outline
• Course Overview
• Classes of Transformations
• Representing Transformations
• Combining Transformations
• Orthographic & Perspective Projections 
• Example: Iterated Function Systems (IFS)
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50

Iterated Function Systems (IFS)

• Capture self-similarity
• Contraction 

(reduce distances)
• An attractor is a 

fixed point
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Example: Sierpinski Triangle
• Described by a set of n affine transformations 
• In this case, n = 3

– translate & scale by 0.5 
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Example: Sierpinski Triangle
for “lots” of random input points (x0, y0)

for j=0 to num_iters
randomly pick one of the transformations
(xk+1, yk+1) = fi (xk, yk)

display (xk, yk)

Increasing the number of iterations
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Another IFS: The Dragon
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3D IFS in OpenGL / Apple Metal
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Assignment 0:  OpenGL/Metal Warmup

• Get familiar with:
– C++ environment
– OpenGL / Metal
– Transformations
– simple Vector & 

Matrix  classes

• Have Fun!
• Due ASAP (start it today!)
• ¼ of the points of the other HWs

(but you should still do it and submit it!)
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Questions?

Image by Henrik Wann Jensen
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For Next Time:
• Read Hugues Hoppe “Progressive Meshes” 

SIGGRAPH 1996
• Everyone will a comment or question on the 

course Submitty discussion forum before 
10am on Friday

We need 4 volunteers to be “Discussants”
Note: This is not a “presentation”.  Don’t make slides!  
Be sure to read blurb (& linked webpage) on course 
webpage about Assigned Readings & Discussants.
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• How do we represent meshes?
• How to automatically decide what parts of the 

mesh are important / worth preserving?
• Algorithm performance: memory, speed?
• What were the original target applications? 

Are those applications still valid?  
Are there other modern applications that 
can leverage this technique?

Questions to think about:


