CSCI-4530/6530 Advanced Computer Graphics

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S21/

Barb Cutler cutler@cs.rpi.edu

Luxo Jr.

Pixar Animation Studios, 1986

Topics for the Semester

- Meshes
- representation
- simplification
- subdivision surfaces
- construction/generation
- volumetric modeling
- Simulation
- particle systems, cloth
- rigid body, deformation
- wind/water flows
- collision detection
- weathering
- Rendering
- ray tracing, shadows
- appearance models
- local vs. global illumination
- radiosity, photon mapping, subsurface scattering, etc.
- procedural modeling
- texture synthesis
- non-photorealistic rendering
- hardware \& more ...

Mesh Simplification

Hoppe "Progressive Meshes" SIGGRAPH 1996

Mesh Generation \& Volumetric Modeling

Cutler et al., "Simplification and Improvement of Tetrahedral Models for Simulation" 2004

Modeling - Subdivision Surfaces

Hoppe et al., "Piecewise Smooth
Surface Reconstruction" 1994

Geri's Game Pixar 1997

Particle Systems

Star Trek: The Wrath of Khan 1982

Physical Simulation

- Rigid Body Dynamics
- Collision Detection
- Fracture
- Deformation

Müller et al., "Stable Real-Time

Fluid Dynamics

E E E E E E E E E E E E E E E E E E E E
$\begin{array}{lllllllllllllllllll} & E & E & E & E & S & S & S & S & E & E & E & E & E & E & E \\ E & E & E & E & E & E & E & E & S & F & F & S & E & E & E & E & E & E & E\end{array}$
E E E E E E E E E S F F S E E E E E E E E

$-\mathrm{S}-\mathrm{S}-\mathrm{-}--\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{-}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{S}$
$\begin{array}{llllllllllllllllllllll}F & F \\ F & F\end{array}$
$\begin{array}{lllllllllllllllllllll}F & F \\ F\end{array}$

Foster \& Mataxas, 1996

"Visual Simulation of Smoke" Fedkiw, Stam \& Jensen SIGGRAPH 2001

Ray Casting/Tracing

- For every pixel
- Construct a ray from the eye
- For every object in the scene
- Find intersection with the ray
- Keep the closest
- Shade (interaction of light and material)
- Secondary rays (shadows, reflection, refraction)

Appearance Models

Wojciech Matusik

Henrik Wann Jensen

Subsurface Scattering

Jensen et al.,
"A Practical Model for Subsurface Light Transport" SIGGRAPH 2001

Syllabus \& Course Website

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S21/

- Which version should I register for?

CSCI 6530: 4 units of graduate credit
CSCI 4530: 4 units of undergraduate credit

- This is an intensive course aimed at graduate students and undergraduates interested in graphics research, involving significant reading \& programming each week. Taking this course in a 5 course / overload semester is discouraged.

Grades

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/s21/

- This course counts as "communications intensive" for undergraduates. As such, you must satisfactorily complete all readings, presentations, project reports to pass the course.
- As this is an elective (not required) course, I expect to grade this course: "A", "A-", "B+", "B", "B-", or "F"
- Don't expect C or D level work to "pass"
- I don't want to give any "F"s

Lecture Attendance/Participation

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/s21/

- Lecture will be discussion-intensive
- We will discuss research papers
- We will do worksheets in groups of 2 or 3
- You are expected to regularly attend and participate in the live lecture
- Lecture will be recorded \& posted on Mediasite
- If time zones or technical problems force you to miss more than a couple lectures, please contact me ASAP

Questions?

Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic \& Perspective Projections
- Example: Iterated Function Systems (IFS)

What is a Transformation?

- Maps points (x, y) in one coordinate system to points (x^{\prime}, y^{\prime}) in another coordinate system

$$
\begin{aligned}
& x^{\prime}=a x+b y+c \\
& y^{\prime}=d x+e y+f
\end{aligned}
$$

- For example, Iterated Function System (IFS):

Simple Transformations

Identity

Translation

Rotation

Isotropic (Uniform) Scaling

- Can be combined
- Are these operations invertible?

Yes, except scale $=0$

Transformations are used to:

- Position objects in a scene
- Change the shape of objects
- Create multiple copies of objects
- Projection for virtual cameras
- Describe animations

Rigid-Body / Euclidean Transforms

- Preserves distances
- Preserves angles

Similitudes / Similarity Transforms

- Preserves angles

Similitudes

Linear Transformations

Affine Transformations

- preserves
parallel lines

Projective Transformations

- preserves lines

General (Free-Form) Transformation

- Does not preserve lines
- Not as pervasive, computationally more involved

Fig 1. Undeformed Plastic

Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic \& Perspective Projections
- Example: Iterated Function Systems (IFS)

How are Transforms Represented?

$$
\begin{gathered}
x^{\prime}=a x+b y+c \\
y^{\prime}=d x+e y+f \\
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
a & b \\
d & e
\end{array}\right)\binom{x}{y}+\binom{c}{f} \\
p^{\prime}=M p+t
\end{gathered}
$$

Homogeneous Coordinates

- Add an extra dimension
- in 2D, we use 3×3 matrices
- In 3D, we use 4×4 matrices
- Each point has an extra value, w

$$
\begin{aligned}
& \left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right)=\left(\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right) \\
& p^{\prime}=
\end{aligned}
$$

Translation in homogeneous coordinates

$$
\begin{aligned}
& x^{\prime}=a x+b y+c \\
& y^{\prime}=d x+e y+f
\end{aligned}
$$

$$
\begin{aligned}
& \text { Affine formulation } \\
& =\left(\begin{array}{ll}
a & b \\
d & e
\end{array}\right)\binom{x}{y}+\binom{c}{f} \left\lvert\, \begin{array}{l}
\text { Homogeneous formulation } \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)} \\
=M p+t
\end{array} \begin{array}{c}
p^{\prime}=M p
\end{array}\right.
\end{aligned}
$$

Homogeneous Coordinates

- Most of the time $w=1$, and we can ignore it

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

- If we multiply a homogeneous coordinate by an affine matrix, w is unchanged

Homogeneous Visualization

- Divide by w to normalize (homogenize)
- $\mathrm{W}=0$? Point at infinity (direction)
$(0,0,1)=(0,0,2)=\ldots \quad \boldsymbol{w}=\mathbf{1}$
$(7,1,1)=(14,2,2)=\ldots$
$(4,5,1)=(8,10,2)=\ldots$

$$
\boldsymbol{w}=\mathbf{2}
$$

Translate (t_{x}, t_{y}, t_{z})

- Why bother with the extra dimension? Because now translations Translate $(c, 0,0)$ $-{ }^{\mathrm{y}}$
 can be encoded in the matrix!

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)
$$

- Isotropic (uniform) scaling: $s_{x}=S_{y}=s_{z}$

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

Rotation

- About z axis

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

Rotation

$\left(\begin{array}{c}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right)=\left(\begin{array}{cccc}k_{x} k_{x}(1-c)+c & k_{z} k_{x}(1-c)-k_{z} S & k_{x} k_{z}(1-c)+k_{y} S & 0 \\ k_{y} k_{x}(1-c)+k_{z} S & k_{z} k_{x}(1-c)+c & k_{y} k_{z}(1-c)-k_{x} S & 0 \\ k_{z} k_{x}(1-c)-k_{y S} S & k_{z} k_{x}(1-c)-k_{x S} S & k_{z} k_{z}(1-c)+c & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right)$
where $c=\cos \theta \& s=\sin \theta$

Storage

- Often, w is not stored (always 1)
- Needs careful handling of direction vs. point
- Mathematically, the simplest is to encode directions with $w=0$
- In terms of storage, using a 3-component array for both direction and points is more efficient
- Which requires to have special operation routines for points vs. directions

Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic \& Perspective Projections
- Example: Iterated Function Systems (IFS)

How are transforms combined?

Scale then Translate

Use matrix multiplication: $\mathrm{p}^{\prime}=\mathrm{T}(\mathrm{S} p)=\mathrm{TS} p$

$$
T S=\left(\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 0 & 3 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Caution: matrix multiplication is NOT commutative!

Non-commutative Composition

Scale then Translate: $\mathrm{p}^{\prime}=\mathrm{T}(\mathrm{Sp})=\mathrm{TS} \mathrm{p}$

Translate then Scale: $\mathrm{p}^{\prime}=\mathrm{S}(\mathrm{T} p)=\mathrm{ST} \mathrm{p}$

Non-commutative Composition

Scale then Translate: $\mathrm{p}^{\prime}=\mathrm{T}(\mathrm{S} p)=\mathrm{TS} \mathrm{p}$

$$
T S=\left(\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 0 & 3 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Translate then Scale: $\mathrm{p}^{\prime}=\mathrm{S}(\mathrm{T} p)=\mathrm{ST} \mathrm{p}$

$$
S T=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 0 & 6 \\
0 & 2 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

Worksheet!

WebEx Breakout Sessions (teams of 2 or 3)
Team upload to Submitty

Write down the 3×3 matrix that transforms this set of 4 points:

NOTE: We'll be doing pair worksheets to th throughout the term. We'll randomize the groups so you work with lots of different partners.

Show your work.

If you finish early... Solve the problem using a different technique.

Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic \& Perspective Projections
- Example: Iterated Function Systems (IFS)

Orthographic vs. Perspective

- Orthographic

- Perspective

Simple Orthographic Projection

- Project all points along the z axis to the $z=0$ plane

$$
\left(\begin{array}{l}
x \\
y \\
0 \\
1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)
$$

Simple Perspective Projection

- Project all points along the z axis to the $z=d$ plane, eyepoint at the origin:

By similar triangles:
$x^{\prime} / \mathrm{x}=\mathrm{d} / \mathrm{z}$
$\mathrm{x}^{\prime}=\left(\mathrm{x}^{*} \mathrm{~d}\right) / \mathrm{z}$

$$
\left(\begin{array}{c}
x * d / z \\
y * d / z \\
d \\
1
\end{array}\right)=\left(\begin{array}{c}
x \\
y \\
z \\
z / d
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)
$$

Alternate Perspective Projection

- Project all points along the z axis to the $z=0$ plane, eyepoint at the ($0,0,-d$):

By similar triangles:

$$
\begin{aligned}
\mathrm{x}^{\prime} / \mathrm{x} & =\mathrm{d} /(\mathrm{z}+\mathrm{d}) \\
\mathrm{x}^{\prime} & =\left(\mathrm{x}^{*} \mathrm{~d}\right) /(\mathrm{z}+\mathrm{d})
\end{aligned}
$$

homogenize

$$
\left(\begin{array}{c}
x * d /(z+d) \\
y * d /(z+d) \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
x \\
y \\
0 \\
(z+d) / d
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 / d & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1 \\
4
\end{array}\right)
$$

In the limit, as $d \rightarrow \infty$

this perspective projection matrix...
...is simply an
orthographic projection

. (x, y, z)

Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic \& Perspective Projections
- Example: Iterated Function Systems (IFS)

Iterated Function Systems (IFS)

- Capture self-similarity
- Contraction (reduce distances)
- An attractor is a fixed point

$$
A=\square f_{i}(A)
$$

Example: Sierpinski Triangle

- Described by a set of n affine transformations
- In this case, $n=3$
- translate \& scale by 0.5

Example: Sierpinski Triangle

for "lots" of random input points ($\mathrm{x}_{0}, \mathrm{y}_{0}$)
for $j=0$ to num_iters
randomly pick one of the transformations
$\left(x_{k+1}, y_{k+1}\right)=f_{i}\left(x_{k}, y_{k}\right)$
display ($\mathrm{x}_{\mathrm{k}}, \mathrm{y}_{\mathrm{k}}$)

Increasing the number of iterations

Another IFS: The Dragon

3D IFS in OpenGL / Apple Metal

Assignment 0: OpenGL/Metal Warmup

- Get familiar with:
- C++ environment
- OpenGL / Metal
- Transformations
- simple Vector \& Matrix classes
- Have Fun!
- Due ASAP (start it today!)
- $1 / 4$ of the points of the other HWs
(but you should still do it and submit it!)

Questions?

Image by Henrik Wann Jensen

For Next Time:

We need 4 volunteers to be "Discussants" Note: This is not a "presentation". Don't make slides! Be sure to read blurb (\& linked webpage) on course webpage about Assigned Readings \& Discussants.

- Read Hugues Hoppe "Progressive Meshes" SIGGRAPH 1996
- Everyone will a comment or question on the course Submitty discussion forum before 10am on Friday

Questions to think about:

- How do we represent meshes?
- How to automatically decide what parts of the mesh are important / worth preserving?
- Algorithm performance: memory, speed?
- What were the original target applications?

Are those applications still valid?
Are there other modern applications that
can leverage this technique?

