
Adjacency Data Structures

includes material from Justin Legakis

Cubic Tragedy

Ming-Yuan Chuan & Chun-Wang Sun, SIGGRAPH 2005

Last Time?
• Simple Transformations

• Classes of Transformations
• Representation

– homogeneous coordinates
• Composition

– not commutative
• Orthographic &

Perspective
Projections

Homework 0: OpenGL Warmup
• Get familiar with:

– C++ environment
– OpenGL/Metal
– Transformations
– simple Vector &

Matrix classes
– CMake

• Have Fun!
• Due ASAP…

Today
• Reading: “Progressive Meshes”
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures
• Reading for Tuesday & HW1

Progressive Meshes

Hugues Hoppe, SIGGRAPH 1996

Progressive Meshes
• Mesh Simplification

– vertex split / edge collapse
– geometry & discrete/scalar attributes
– priority queue

• Level of Detail
– geomorphs

• Progressive Transmission
• Mesh Compression
• Selective Refinement

– view dependent

Selective Refinement

Preserving Discontinuity Curves

• Remove a vertex & surrounding triangles,
re-triangulate the hole

• Merge Nearby
Vertices
– will likely change

the topology…

Other Simplification Strategies

from Garland & Heckbert, “Surface Simplification
Using Quadric Error Metrics” SIGGRAPH 1997

When to Preserve Topology?

from Garland & Heckbert, “Surface Simplification
Using Quadric Error Metrics” SIGGRAPH 1997

Today
• Reading: “Progressive Meshes”
• Surface Definitions

– Well-Formed Surfaces
– Orientable Surfaces
– Computational Complexity

• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures
• Reading for Tuesday & HW1

Well-Formed Surfaces
• Components Intersect "Properly"

– Any pair of Faces are: disjoint, share single Vertex,
or share 2 Vertices and the Edge joining them

– Every edge is incident to exactly 2 vertices
– Every edge is incident to exactly 2 faces

• Local Topology is "Proper"
– Neighborhood of a vertex is homeomorphic to a disk

(permits stretching and bending, but not tearing)
– Also called a 2-manifold
– If boundaries are allowed, points on the boundary

are homeomorphic to a half-disk, called a "manifold
with boundaries"

• Global Topology is "Proper"
– Connected, Closed, & Bounded

Orientable Surfaces?

from mathworld.wolfram.com

Closed Surfaces and Refraction
• Original Teapot model is not "watertight":

 intersecting surfaces at spout & handle, no bottom,
a hole at the spout tip, a gap between lid & base

• Requires repair before ray tracing with refraction

Henrik Wann Jensen

Computational Complexity
• Adjacent Element Access Time

– linear, constant time average case,
or constant time?

– requires loops/recursion/if ?
• Memory

– variable size arrays or constant size?
• Maintenance

– ease of editing
– ensuring consistency

Questions?

Today
• Reading: “Progressive Meshes”
• Surface Definitions
• Simple Data Structures

– List of Polygons
– List of Edges
– List of Unique Vertices & Indexed Faces:
– Simple Adjacency Data Structure

• Fixed Storage Data Structures
• Fixed Computation Data Structures
• Reading for Tuesday & HW1

List of Polygons:

(3,-2,5), (3,6,2), (-6,2,4)

(2,2,4), (0,-1,-2), (9,4,0), (4,2,9)

(1,2,-2), (8,8,7), (-4,-5,1)

(-8,2,7), (-2,3,9), (1,2,-7)

List of Edges:

(3,6,2), (-6,2,4)

(2,2,4), (0,-1,-2)

(9,4,0), (4,2,9)

(8,8,7), (-4,-5,1)

(-8,2,7), (1,2,-7)

(3,0,-3), (-7,4,-3)

(9,4,0), (4,2,9)

(3,6,2), (-6,2,4)

(-3,0,-4), (7,-3,-4)

List of Unique Vertices & Indexed Faces:

(-1, -1, -1)
(-1, -1, 1)
(-1, 1, -1)
(-1, 1, 1)
(1, -1, -1)
(1, -1, 1)
(1, 1, -1)
(1, 1, 1)

1 2 4 3
5 7 8 6
1 5 6 2
3 4 8 7
1 3 7 5
2 6 8 4

Vertices:

Faces:

Problems with Simple Data Structures

• No Adjacency Information
• Linear-time Searches

• Adjacency is implicit for structured meshes,
but what do we do for unstructured meshes?

Mesh Data
• So, in addition to:

– Geometric Information (position)
– Attribute Information (color, texture,

temperature, population density, etc.)
• Let’s store:

– Topological Information (adjacency, connectivity)

Simple Adjacency
• Each element (vertex, edge, and face) has a list of

pointers to all incident elements
• Queries depend only on local complexity of mesh
• Data structures do not have fixed size
• Slow! Big! Too much work to maintain!

Questions?

Today
• Reading: “Progressive Meshes”
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures

– Winged Edge (Baumgart, 1975)

• Fixed Computation Data Structures
• Reading for Tuesday & HW1

Winged Edge (Baumgart, 1975)
• Each edge stores pointers

to 4 Adjacent Edges,
2 Face & 2 Vertex neighbors

• Vertices and Faces
have a single pointer
to one incident Edge

• Data Structure Size?

• How do we gather all faces
surrounding one vertex?

VERTEX

EDGE

FACE

•

•

•
Fixed

Messy, because there is
no consistent way to
order pointers

Today
• Reading: “Progressive Meshes”
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structure

– HalfEdge (Eastman, 1982)
– SplitEdge
– Corner
– QuadEdge (Guibas and Stolfi, 1985)
– FacetEdge (Dobkin and Laszlo, 1987)

• Reading for Tuesday & HW1

HalfEdge (Eastman, 1982)
• Every edge is represented by two directed

HalfEdge structures
• Each HalfEdge stores:

– vertex at end of
directed edge

– symmetric half edge
– face to left of edge
– next points to the

HalfEdge counter-
clockwise around
face on left

• Orientation is essential, but
can be done consistently!

HalfEdge (Eastman, 1982)
• Starting at a half edge, how do we find:

the other vertex of the edge?
the other face of the edge?
the clockwise edge around

the face at the left?
all the edges surrounding

the face at the left?
all the faces surrounding

the vertex?

HalfEdge (Eastman, 1982)
• Loop around a Face:
HalfEdgeMesh::FaceLoop(HalfEdge *HE) {
 HalfEdge *loop = HE;
 do {
 loop = loop->Next;
 } while (loop != HE);
}

• Loop around a Vertex:
HalfEdgeMesh::VertexLoop(HalfEdge *HE) {
 HalfEdge *loop = HE;
 do {
 loop = loop->Next->Sym;
 } while (loop != HE);
}

HalfEdge (Eastman, 1982)
• Data Structure Size?

• Data:

– geometric information stored at Vertices
– attribute information in Vertices, HalfEdges, and/or

Faces
– topological information in HalfEdges only!

• Orientable surfaces only (no Mobius Strips!)
• Local consistency everywhere implies global consistency
• Time Complexity?

•
Fixed

•
–
–
–

linear in the amount of information gathered

SplitEdge Data Structure:

• HalfEdge and SplitEdge are dual structures!
SplitEdgeMesh::FaceLoop() = HalfEdgeMesh::VertexLoop()

SplitEdgeMesh::VertexLoop() = HalfEdgeMesh::FaceLoop()

Corner Data Structure:
• The Corner data structure is its own dual!

Questions?

Today
• Reading: “Progressive Meshes”
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structure

– HalfEdge (Eastman, 1982)
– SplitEdge
– Corner
– QuadEdge (Guibas and Stolfi, 1985)
– FacetEdge (Dobkin and Laszlo, 1987)

• Reading for Tuesday & HW1

• Consider the Mesh and its Dual simultaneously
– Vertices and Faces switch roles, we just re-label them
– Edges remain Edges

• Classic dual mesh
example:
– Delaunay

triangulation*
– Voronoi

diagram*
* has other special properties

QuadEdge (Guibas and Stolfi, 1985)

QuadEdge (Guibas and Stolfi, 1985)
• Eight ways to look at each edge

– Four ways to look at primal edge
– Four ways to look at dual edge

QuadEdge (Guibas and Stolfi, 1985)

• Operators in Edge Algebra:
– Rot: Bug rotates 90 degrees to its left

(switches to/from dual graph)
– Sym: Bug turns around 180 degrees
– Flip: Bug flips upside down

(other side of the leaf)
– Onext: Bug rotates CCW to next

edge with same origin
(either Vertex or Face)

Note: different terminology...

QuadEdge (Guibas and Stolfi, 1985)
• Some Properties of Flip, Sym, Rot, and Onext:

– e Rot4 = e
– e Rot2 ≠ e
– e Flip2 = e
– e Flip Rot Flip Rot = e
– e Rot Flip Rot Flip = e
– e Rot Onext Rot Onext = e
– e Flip Onext Flip Onext = e
– e Flip-1 = e Flip
– e Sym = e Rot2
– e Rot-1 = e Rot3
– e Rot-1 = e Flip Rot Flip
– e Onext-1 = e Rot Onext Rot
– e Onext-1 = e Flip Onext Flip
– e Lnext = e Rot-1 Onext Rot
– e Rnext = e Rot Onext Rot-1
– e Dnext = e Sym Onext Sym-1
– e Oprev = e Onext-1 = e Rot Onext Rot
– e Lprev = e Lnext-1 = e Onext Sym
– e Rprev = e Rnext-1 = e Sym Onext
– e Dprev = e Dnext-1 = e Rot-1 Onext Rot

All of these functions can be
expressed as a constant number of
Rot, Sym, Flip, and Onext operations
independent of the local topology and
the global size and complexity of the
mesh.

FacetEdge (Dobkin and Laszlo, 1987)
• QuadEdge (2D, surface) → FacetEdge (3D, volume)
• Faces → Polyhedra / Cells
• Edge → Polygon & Edge pair

Questions?

Today
• Reading: “Progressive Meshes”
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures
• Reading for Tuesday & HW1

• "Teddy: A Sketching Interface for 3D Freeform
Design", Igarashi et al., SIGGRAPH 1999

How do we represent objects that don’t have flat polygonal faces
& sharp corners? What are the right tools to design/construct
digital models of blobby, round, or soft things? What makes a
user interface intuitive, quick, and easy-to-use for beginners?

Reading for Tuesday Four new volunteers
to be “Discussants”?

Homework 1 - will be posted soon!

