Subdivision Surfaces

Geri's Game

Pixar Animation Studios, 1986

Last Time?

- Papers for Today
 - "Subdivision Surfaces in Character Animation"
 - "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time
- Worksheet: Bezier Spline vs. BSpline

Reading for Today

Quad Meshes more common in artistic practice (e.g. Pixar's Geri's Game)

• DeRose, Kass, & Truong, "Subdivision Surfaces in Character Animation", SIGGRAPH 1998

Figure 5: Geri's hand as a piecewise smooth Catmull-Clark surface. Infinitely sharp creases are used between the skin and the finger nails.

Subdivision Surfaces in Character Animation

- Catmull Clark
 Subdivision Rules
- Semi-sharp vs. Infinitely-sharp creases
- Mass-Spring Cloth (next week)
- Hierarchical Mesh for Collision
- Texturing Subdivision Surfaces

Figure 11: (a) A texture mapped regular pentagon comprised of 5 triangles; (b) the pentagonal model with its vertices moved; (c) A subdivision surface whose control mesh is the same 5 triangles in (a), and where boundary edges are marked as creases; (d) the subdivision surface with its vertices positioned as in (b).

Reading for Today

Triangle meshes directly applies to HW1!

 Hoppe et al., "Piecewise Smooth Surface Reconstruction" SIGGRAPH 1994

Piecewise Smooth Surface Reconstruction

- From input: scanned mesh points
 - Estimate topological type (genus)
 - Mesh optimization (a.k.a. simplification)
 - Smooth surface optimization

- Papers for Today
 - "Subdivision Surfaces in Character Animation"
 - "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time
- Worksheet: Bezier Spline vs. BSpline

http://en.wikipedia.org/wiki/Weft

Misc. Mesh/Surface Vocabulary

- Extraordinary Vertex
 - Quad mesh: vertices w/ valence ≠ 4
 - Hex mesh: vertices w/ valence \neq 3
 - Tri mesh: vertices w/ valence ≠ 6

Misc. Mesh/Surface Vocabulary

- Extraordinary Vertex
 - Quad mesh: vertices w/ valence ≠ 4
 - Hex mesh: vertices w/ valence \neq 3
 - Tri mesh: vertices w/ valence ≠ 6

- Papers for Today
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
 - Doo Sabin (anything!)
 - Loop, Butterfly, $\sqrt{3}$ (triangles only)
 - Catmull Clark (turns everything into quads)
 - ... many others!
- Interpolating Subdivision
- Papers for Next Time
- Worksheet: Bezier Spline vs. BSpline

Loop Subdivision

Subdivision Rules. The masks for the Loop scheme are shown in Figure 4.3. For boundaries and edges tagged as *crease* edges, special rules are used. These rules produce a cubic spline curve along the boundary/crease. The curve only depends on control points on the boundary/crease.

Figure 4.3: Loop subdivision: in the picture above, β can be chosen to be either $\frac{1}{n}(5/8 - (\frac{3}{8} + \frac{1}{4}\cos\frac{2\pi}{n})^2)$ (original choice of Loop [16]), or, for n > 3, $\beta = \frac{3}{8n}$ as proposed by Warren [33]. For n = 3, $\beta = 3/16$ can be used.

SIGGRAPH 2000 course notes Subdivision for Modeling and Animation (page 70)

Catmull Clark Subdivision

(1)

(2)

"Subdivision Surfaces in Character Animation", DeRose, Kass & Truong, SIGGRAPH 1998

Catmull-Clark preferred by Artists

- Catmull-Clark is based on quadrilaterals
 - Like NURBS, specifically cubic bsplines
 - Implicit adjacency in subdivided microgeometry
 - Better than triangles for symmetric objects

Questions?

Today • Papers for Today

- "Subdivision Surfaces in Character Animation"
- "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time
- Worksheet: Bezier Spline vs. BSpline

Interpolating Subdivision

- Interpolation vs.
 Approximation of control points
- Handle arbitrary topological type
- Reduce the "extraneous bumps & wiggles"

Figure 4: Interpolating a coarsely polygonized torus. Upper left: original mesh. Upper right: Shirman-Séquin interpolation[14]. Lower left: Interpolating Catmull-Clark surface. Lower right: Faired interpolating Catmull-Clark surface.

"Efficient, fair interpolation using Catmull-Clark surfaces", Halstead, Kass & DeRose, SIGGRAPH 1993

Solve for New Positions

- Goal: Find the control mesh vertex positions, x (a column vector of 3D points), such that the position of the vertices in the limit match the input vertices, b (also a column vector of points)
- Use Least Squares to solve
 Ax = b

where A is a square matrix with the interpolation rules and connectivity of the mesh

• See paper for extension to match limit normals

Fairing

- Fairing: an additional part or structure added to an aircraft, tractor-trailer, etc. to smooth the outline and thus reduce drag
- Subdivide initial resolution twice so that all constrained vertex positions are independent

Figure 5: Top row: Original mesh, Interpolating mesh, Faired interpolating mesh. Bottom row: Corresponding Catmull-Clark surfaces. Interpolation introduces wiggles which are removed by fairing.

- Papers for Today
 - "Subdivision Surfaces in Character Animation"
 - "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time
- Worksheet: Bezier Spline vs. BSpline

Today

- Papers for Today
 - "Subdivision Surfaces in Character Animation"
 - "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time
- Worksheet: Bezier Spline vs. BSpline

Connecting Cubic Bézier Curves

- Where is this curve
 - C⁰ continuous?
 - G¹ continuous?
 - C¹ continuous?
- What's the relationship between:
 - the # of control points, and
 - the # of cubic Bézier subcurves?

