Subdivision Surfaces

Geri's Game

Pixar Animation Studios, 1986

Questions on Homework 1?

-What's an illegal edge collapse?

What if vertex 1 is the same as vertex 4?

- To be legal, the ring of neighboring vertices must be unique (have no duplicates)!

Notes about HW Autograding

- HW is run on a Linux desktop machine
- Automated:
- Keyboard \& mouse commands
- Reasonable pauses (sleep)
- Screenshots
- Will have longer wait times

Don't panic if autograding takes a while or gets stuck. Post on the forum if you experience problems.

- not parallelized (one student at a time)
- ... now two desktops
- Due to COVID
- Your submission is received \& stored at RPI
- Shipped to Barb's house for grading
- w/ Spectrum router... Networking is suspect

Last Time?

- Curves \& Surfaces
- Continuity Definitions
- $\mathrm{C}^{0}, \mathrm{G}^{1}, \mathrm{C}^{1}, \ldots \mathrm{C}^{\infty}$
- Interpolation vs. Approximation Splines
- Cubic Bezier \& BSpline

Today

- Papers for Today
- "Subdivision Surfaces in Character Animation"
- "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time
- Worksheet: Bezier Spline vs. BSpline

Reading for Today

- DeRose, Kass, \& Truong, "Subdivision Surfaces in Character Animation", SIGGRAPH 1998

Figure 5: Geri's hand as a piecewise smooth Catmull-Clark surface. Infinitely sharp creases are used between the skin and the finger nails.

Subdivision Surfaces in Character Animation

- Catmull Clark Subdivision Rules
- Semi-sharp vs. Infinitely-sharp creases
- Mass-Spring Cloth (next week)
- Hierarchical Mesh for Collision
- Texturing Subdivision Surfaces

(a)

(c)

(b)

(d)

Figure 11: (a) A texture mapped regular pentagon comprised of 5 triangles; (b) the pentagonal model with its vertices moved; (c) A subdivision surface whose control mesh is the same 5 triangles in (a), and where boundary edges are marked as creases; (d) the subdivision surface with its vertices positioned as in (b).

Reading for Today

- Hoppe et al., "Piecewise Smooth Surface Reconstruction" SIGGRAPH 1994

Piecewise Smooth Surface Reconstruction

- From input: scanned mesh points
- Estimate topological type (genus)
- Mesh optimization (a.k.a. simplification)
- Smooth surface optimization

Piecewise Smooth Surface Reconstruction

- Optimization Remeshing

edge collapse

edge split

edge swap

edge tag

move vertex

Piecewise Smooth Surface Reconstruction

- Crease subdivision masks decouple behavior of surface on either side of crease
- Crease rules cannot model a cone
- Optimization can be done locally
- subdivision control points have only local influence
- Results
- Noise?
- Applicability?
- Limitations?
- Running Time

Spline-Based Modeling Headaches

seams \& holes

Today

- Papers for Today
- "Subdivision Surfaces in Character Animation"
- "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time
- Worksheet: Bezier Spline vs. BSpline

Misc. Mesh/Surface Vocabulary

- Genus: The maximum number of disjoint simple closed curves
 which can be cut from an orientable surface
 of genus g without disconnecting it is g.

Misc. Mesh/Surface Vocabulary

- Homeomorphic/Topological equivalence: a continuous stretching and bending of the object into a new shape

Misc. Mesh/Surface Vocabulary

- Dihedral Angle:
- the angle between the planes of two triangular faces
- "looking down the edge" between two faces, the angle between the faces.

- Valence (a.k.a. degree): the number of edges incident to the vertex.

Misc. Mesh/Surface Vocabulary

- Warp \& weft: Yarns used in weaving. Because the weft does not have to be stretched in the way that the warp is, it can generally be less strong.

http://en.wikipedia.org/wiki/Weft

Misc. Mesh/Surface Vocabulary

- Extraordinary Vertex
- Quad mesh: vertices w/ valence $\neq 4$
- Hex mesh: vertices w/ valence $\neq 3$
- Tri mesh: vertices w/ valence $\neq 6$

Misc. Mesh/Surface Vocabulary

- Extraordinary Vertex
- Quad mesh: vertices w/ valence $=4$
- Hex mesh: vertices w/ valence $\neq 3$
- Tri mesh: vertices w/ valence $\neq 6$

Today

- Papers for Today
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Doo Sabin (anything!)
- Loop, Butterfly, $\sqrt{ } 3$ (triangles only)
- Catmull Clark (turns everything into quads)
- ... many others!
- Interpolating Subdivision
- Papers for Next Time
- Worksheet: Bezier Spline vs. BSpline

Chaikin's Algorithm

Doo-Sabin Subdivision

Idea: introduce a new vertex for each face At the midpoint of old vertex, face centroid

Doo-Sabin Subdivision

Original Cube

The 1st subdivision The $2 n d$ subdivision

The 3rd subdivision

The 5th subdivision

Loop Subdivision

Shirley, Fundamentals of Computer Graphics

Loop Subdivision

Subdivision Rules. The masks for the Loop scheme are shown in Figure 4.3. For boundaries and edges tagged as crease edges, special rules are used. These rules produce a cubic spline curve along the boundary/crease. The curve only depends on control points on the boundary/crease.

Figure 4.3: Loop subdivision: in the picture above, β can be chosen to be either $\frac{1}{n}\left(5 / 8-\left(\frac{3}{8}+\frac{1}{4} \cos \frac{2 \pi}{n}\right)^{2}\right)$ (original choice of Loop [16]), or, for $n>3, \beta=\frac{3}{8 n}$ as proposed by Warren [33]. For $n=3, \beta=3 / 16$ can be used.

Adding creases to Loop Subdivision

- Vertex \&

 edge masks - Limit masks- Position
- Tangent

regular or non-regular crease vertex

corner vertex

(2) regular crease edge

(3) non-regular crease edge

Catmull Clark Subdivision

Figure 3: Recursive subdivision of a topologically complicated mesh: (a) the control mesh; (b) after one subdivision step; (c) after two subdivision steps; (d) the limit surface.

$$
\begin{equation*}
e_{j}^{i+1}=\frac{v^{i}+e_{j}^{i}+f_{j-1}^{i+1}+f_{j}^{i+1}}{4} \tag{1}
\end{equation*}
$$

where subscripts are taken modulo the valence of the central vertex v^{0}. (The valence of a vertex is the number of edges incident to it.) Finally, a vertex point v^{i} is computed as

$$
\begin{equation*}
v^{j+1}=\frac{n-2}{n} v^{j}+\frac{1}{n^{2}} \sum_{j} e_{j}^{i}+\frac{1}{n^{2}} \sum_{j} f_{j}^{i+1} \tag{2}
\end{equation*}
$$

Vertices of valence 4 are called ordinary; others are called extraordinary.

Figure 4: The situation around a vertex v^{0} of valence n.

Catmull-Clark Subdivision

https://team.inria.fr/virtualplants/teaching/informatique-graphique-2016/tp4-instructions/

Catmull-Clark preferred by Artists

- Catmull-Clark is based on quadrilaterals
- Like NURBS, specifically cubic bsplines
- Implicit adjacency in subdivided microgeometry
- Better than triangles for symmetric objects

Butterfly Subdivision

- Triangle-based subdivisior
- Alternate scheme to Loop

every triangle is split into four

Loop scheme

Butterfly scheme

$\sqrt{ } 3$ Subdivision Kobbelt, SIGGRAPH 2000

Adaptive Subdivision (Loop): Need to close gaps between different levels of refinement

the split operation places a midvertex at the centre of each triangle

joining the midvertex to the vertices of the triangle realises the 1-to-3 split

after smoothing each old vertex, edges are flipped to connect pairs of midvertices

Loop: less
localized refinement

$\sqrt{ }$: more localized refinement

Questions?

Justin Legakis

Today

- Papers for Today
- "Subdivision Surfaces in Character Animation"
- "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time
- Worksheet: Bezier Spline vs. BSpline

Interpolation vs. Approximation Curves

- Interpolation Curve - over constrained \rightarrow lots of (undesirable?) oscillations

- Approximation Curve - more reasonable?

Interpolating Subdivision

- Chaikin:

- Doo-Sabin:

of the centroids of each
edge/face

Interpolating Subdivision

- Interpolation vs. Approximation of control points
- Handle arbitrary topological type
- Reduce the "extraneous bumps \& wiggles"

Figure 4: Interpolating a coarsely polygonized torus. Upper left: original mesh. Upper right: Shirman-Séquin interpolation[14]. Lower left: Interpolating Catmull-Clark surface. Lower right: Faired interpolating Catmull-Clark surface.
"Efficient, fair interpolation using Catmull-Clark surfaces", Halstead, Kass \& DeRose, SIGGRAPH 1993

Interpolation of Catmull-Clark Surfaces

- Solve for a new control mesh (generally "bigger") such that when Catmull-Clark subdivision is applied it interpolates the original control mesh

Vertex Position in Limit

- V_{n} stores the center vertex \& surrounding edge \& face vertices as a big column vector

$$
V_{n}^{i+1}=\mathbf{S}_{n} V_{n}^{i}
$$

- When $\mathrm{n}=4$:
($\mathrm{n}=$ valence)
$\mathrm{S}_{4}=\frac{1}{16} *$
$V_{n}^{\infty}:=\lim _{i \rightarrow \infty} \mathbf{S}_{n}^{i} V_{n}^{1}$

When $\mathrm{n}=4$:
$\mathbf{n}=$ valence $)$
$V_{n}^{\infty}:=\lim _{i \rightarrow \infty} \mathbf{S}_{n}^{i} V_{n}^{1} \quad \frac{1}{16} *\left(\begin{array}{ccccccccc}9 & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 6 & 6 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 6 & 1 & 6 & 1 & 0 & 1 & 1 & 0 & 0 \\ 6 & 0 & 1 & 6 & 1 & 0 & 1 & 1 & 0 \\ 6 & 1 & 0 & 1 & 6 & 0 & 0 & 1 & 1 \\ 4 & 4 & 4 & 0 & 0 & 4 & 0 & 0 & 0 \\ 4 & 0 & 4 & 4 & 0 & 0 & 4 & 0 & 0 \\ 4 & 0 & 0 & 4 & 4 & 0 & 0 & 4 & 0 \\ 4 & 4 & 0 & 0 & 4 & 0 & 0 & 0 & 4\end{array}\right)$

Solve for New Positions

- Goal: Find the control mesh vertex positions, x (a column vector of 3D points), such that the position of the vertices in the limit match the input vertices, b (also a column vector of points)
- Use Least Squares to solve

$$
\mathbf{A} x=b
$$

where A is a square matrix with the interpolation rules and connectivity of the mesh

- See paper for extension to match limit normals

Fairing

- Fairing: an additional part or structure added to an aircraft, tractor-trailer, etc. to smooth the outline and thus reduce drag
- Subdivide initial resolution twice so that all constrained
vertex positions are independent

Figure 5: Top row: Original mesh, Interpolating mesh, Faired interpolating mesh. Bottom row: Corresponding Catmull-Clark surfaces. Interpolation introduces wiggles which are removed by fairing.

Today

- Papers for Today
- "Subdivision Surfaces in Character Animation"
- "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time
- Worksheet: Bezier Spline vs. BSpline

Reading for Next Time: (pick one)

- Oriented Bounding Box (OBB): generalization of the (axis-aligned) BVH

OBB-Tree: A Hierarchical Structure for Rapid Interference Detection, Gottschalk, Lin, \& Manocha, SIGGRAPH 1996.

Reading for Next Time: (pick one)

- "C-Space Tunnel Discovery for Puzzle Path Planning", Zhang, Belfer, Kry, \& Voucha, SIGGRAPH 2020.

Today

- Papers for Today
- "Subdivision Surfaces in Character Animation"
- "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time
- Worksheet: Bezier Spline vs. BSpline

Connecting Cubic Bézier Curves

- Where is this
curve
$-\mathrm{C}^{0}$ continuous?
- G^{1} continuous?
- C^{1} continuous?
- What's the relationship between:
- the \# of control points, and
- the \# of cubic Bézier subcurves?

BSpline Curve Control Points

Default BSpline

BSpline with
Discontinuity

BSpline which passes through end points

Repeat interior control point

Pop Worksheet!

- What is the minimum number of cubic Bezier curve

CuI
ve

- Repeat for cubic BSplines curve segments.

