Implicit Surfaces, Collision Detection, & Volumetric Data Structures

Traveler's Insurance, Snowball

Weta Digital, 2007

Untitled, 1550 chairs stacked, Doris Salcedo, 2003

- Readings for Today
- Motivation: Collision Detection is Expensive
- Conservative Bounding Region
- Spatial Acceleration Data Structures
- Papers for Friday
- Questions about Homework 1
- Worksheet on Subdivision Surfaces

"I-COLLIDE: An Interactive and Exact Collision Detection System for Large-scaled Environments", Cohen, Lin, Manocha, & Ponamgi, I3D 1995.

<text><text><image><image><image>

Searching Configuration Space

More degrees of freedom
 higher dimensional
 configuration space

pose space shaded by distance to target

"The good-looking textured light-sourced bouncy fun smart and stretchy page" Hugo Elias, http://freespace.virgin.net/hugo.elias/models/m_ik2.htm

- Readings for Today
- Motivation: Collision Detection is Expensive
- Conservative Bounding Region
- Spatial Acceleration Data Structures
- Papers for Friday
- Questions about Homework 1
- Worksheet on Subdivision Surfaces

Collision Detection for Solids

- How to detect collision between 2 polyhedra?
- Need an inside/outside test
- Test if a vertex is inside the other polyhedron
- But treat also edge-edge intersection

- Readings for Today
- Motivation: Collision Detection is Expensive
- Conservative Bounding Region
- Spatial Acceleration Data Structures
- Papers for Friday
- Questions about Homework 1
- Worksheet on Subdivision Surfaces

General Collision Detection

- Put a hierarchy around your objects
- Use the fast overlap test recursively
- Handle exact case at the leaves (when necessary)
- More difficult for self-collision (e.g. cloth)
 - Because there is more overlap

- Readings for Today
- Motivation: Collision Detection is Expensive
- Conservative Bounding Region
- Spatial Acceleration Data Structures
 - Fixed/Uniform/Regular Grid
 - Nested Grid
 - Octree
 - Binary Space Partition
 - K-d tree
 - Bounding Volume Hierarchy
- Papers for Friday
- Questions about Homework 1
- Worksheet on Subdivision Surfaces

Fixed/Uniform/Regular Grid

- Separate geometry into regions
- Reduces pairwise comparisons
- Primitives that overlap multiple cells?

Insert into multiple cells (use pointers)

Fixed/Uniform Grid Discussion

- Advantages?
 - easy to construct
 - easy to traverse
- Disadvantages?
 - may be only sparsely filled
 - geometry may still be clumped

- Readings for Today
- Motivation: Collision Detection is Expensive
- Conservative Bounding Region
- Spatial Acceleration Data Structures
 - Fixed/Uniform/Regular Grid
 - Nested Grid
 - Octree
 - Binary Space Partition
 - K-d tree
 - Bounding Volume Hierarchy
- Papers for Friday
- Questions about Homework 1
- Worksheet on Subdivision Surfaces

Adaptive Grids

• Subdivide until each cell contains no more than *n* elements, or maximum depth *d* is reached

Adaptive Grids

 Subdivide until each cell contains no more than *n* elements, or maximum depth *d* is reached

Quadtree/Octree

BSP Tree

<section-header> Variations of Adaptive Grids When to split? When a cell contains "lots" of geometry, but has not yet reached the max tree depth Where to split? Quadtree/Octree: split every dimension in half, always axis aligned kd-tree: choose one dimension (often the largest dimension) and split it axis aligned (but not necessarily at the midpoint) Binary Space Partition (BSP): choose an arbitrary cut plane Which one is best? It depends... Often they are all equally good!

kd tree

Adaptive Grid Discussion

- Advantages?
 - grid complexity matches geometric density
- Disadvantages?
 - more expensive to traverse (binary tree, lots of pointers)

- Readings for Today
- Motivation: Collision Detection is Expensive
- Conservative Bounding Region
- Spatial Acceleration Data Structures
 - Fixed/Uniform/Regular Grid
 - Nested Grid
 - Octree
 - Binary Space Partition
 - K-d tree
 - Bounding Volume Hierarchy
- Papers for Friday
- Questions about Homework 1
- Worksheet on Subdivision Surfaces

Bounding Volume Hierarchy

- Find bounding box of objects
- Split objects into two groups
- Recurse

Bounding Volume Hierarchy Discussion

- Advantages
 - easy to construct
 - easy to traverse
 - binary
- Disadvantages
 - may be difficult to choose a good split for a node
 - poor split may result in minimal spatial pruning

- Readings for Today
- Motivation: Collision Detection is Expensive
- Conservative Bounding Region
- Spatial Acceleration Data Structures
- Papers for Friday
- Questions about Homework 1
- Worksheet on Subdivision Surfaces

- Readings for Today
- Motivation: Collision Detection is Expensive
- Conservative Bounding Region
- Spatial Acceleration Data Structures
- Papers for Friday
- Questions about Homework 1
- Worksheet on Subdivision Surfaces

