Mass-Spring Systems

Simulating Knitted Cloth at the Yarn Level

- Papers for Today
- Particle Systems
 - Equations of Motion (Physics)
 - Forces: Gravity, Spatial, Damping
 - Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples
 - String, Hair, Cloth
- Stiffness
- Discretization
- Papers for Tuesday
- Worksheet on Volumetric Structures

• "Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior", Provot, 1995.

Simple mass-spring system

Improved solution

"Predicting the Drape of Woven Cloth Using Interacting Particles"

- Breen, House, and Wozny
- SIGGRAPH
 1994

100% Cotton Weave

Cloth in Practice (w/ Animation)

OPTIONAL READING

 Baraff, Witkin & Kass Untangling Cloth SIGGRAPH 2003

a

- Papers for Today
- Particle Systems
 - Equations of Motion (Physics)
 - Forces: Gravity, Spatial, Damping
 - Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples
 - String, Hair, Cloth
- Stiffness
- Discretization
- Papers for Tuesday
- Worksheet on Volumetric Structures

What is a Particle System?

- Collection of many small simple particles that maintain *state* (position, velocity, color, etc.)
- Particle motion influenced by external force fields
- Integrate the laws of mechanics (ODE Solvers)
- To model: sand, dust, smoke, sparks, flame, water, etc.

Particle Motion

- mass m, position x, velocity v
- equations of motion:

$$\frac{d}{dt}x(t) = v(t)$$

$$\frac{d}{dt}v(t) = \frac{1}{m}F(x, v, t) \qquad F = ma$$

- Analytic solutions can be found for some classes of differential equations, but most can't be solved analytically
- Instead, we will numerically approximate a solution to our *initial value problem*

- Papers for Today
- Particle Systems
 - Equations of Motion (Physics)
 - Forces: Gravity, Spatial, Damping
 - Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples
 - String, Hair, Cloth
- Stiffness
- Discretization
- Papers for Tuesday
- Worksheet on Volumetric Structures

Forces: Spatial Fields

- Force on particle *i* depends only on position of *i* wind
 - attractors
 - repulsers
 - vortices
- Can depend on time (e.g., wind gusts)
- Note: these forces will generally add energy to the system, and thus may need damping...

Forces: Damping

$$f^{(i)} = -dv^{(i)}$$

- Force on particle *i* depends only on velocity of *i*
- Force opposes motion
 - A hack mimicking real-world friction/drag
- Removes energy, so system can settle
- Small amount of damping can stabilize solver
- Too much damping makes motion too glue-like

Questions?

- Papers for Today
- Particle Systems
 - Equations of Motion (Physics)
 - Forces: Gravity, Spatial, Damping
 - Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples
 - String, Hair, Cloth
- Stiffness
- Discretization
- Papers for Tuesday
- Worksheet on Volumetric Structures

Euler's Method

- Examine f (X,t) at (or near) current state
- Take a step of size *h* to new value of **X**:

$$t_1 = t_0 + h$$
$$\mathbf{X}_1 = \mathbf{X}_0 + h f(\mathbf{X}_0, t_0)$$

update the position by adding a little bit of the *current* velocity & update the velocity by adding a little bit of the *current* acceleration

 $\mathbf{X} = \begin{pmatrix} x \\ v \end{pmatrix} \quad f(X,t) = \begin{pmatrix} v \\ \frac{1}{m}F(x,v,t) \end{pmatrix} \quad \text{of } ac$

Piecewise-linear approximation to the curve

- Effect of Step Size
 - Step size controls accuracy
 - Smaller steps more closely follow curve
 - For animation, we may want to take many small steps per frame
 - How many frames per second for animation?
 - How many steps per frame?

Euler's Method: Inaccurate

- Simple example: particle in stable circular orbit around planet (origin)
- Current velocity is always tangent to circle
- Force is perpendicular to circle

 Euler method will spiral outward no matter how small h is

Euler's Method: Unstable

- Problem: f(x,t) = -kx
- Solution: $x(t) = x_0 e^{-kt}$
- Limited step size:

$$x_{1} = x_{0} (1 - hk)$$

$$\begin{cases} h \le 1/k & \text{ok} \\ h > 1/k & \text{oscillates } \pm \\ h > 2/k & \text{explodes} \end{cases}$$

- s ± s
- If k is big, h must be small

Analysis using Taylor Series

• Expand exact solution $\mathbf{X}(t)$

 $\mathbf{X}(t_0+h) = \mathbf{X}(t_0) + h\left(\frac{d}{dt}\mathbf{X}(t)\right)\Big|_{t_0} + \frac{h^2}{2!}\left(\frac{d^2}{dt^2}\mathbf{X}(t)\right)\Big|_{t_0} + \frac{h^3}{3!}\left(\cdots\right) + \cdots$

• Euler's method:

 $\mathbf{X}(t_0 + h) = \mathbf{X}_0 + h f(\mathbf{X}_0, t_0) \qquad \dots + O(h^2) \operatorname{error}$

 $h \rightarrow h/2 \Rightarrow error \rightarrow error/4 \text{ per step} \times \text{twice as many steps}$ $\rightarrow error/2$

First-order method: Accuracy varies with *h* – To get 100x better accuracy need 100x more steps

- Papers for Today
- Particle Systems
 - Equations of Motion (Physics)
 - Forces: Gravity, Spatial, Damping
 - Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples

 String, Hair, Cloth
- Stiffness
- Discretization
- Papers for Tuesday
- Worksheet on Volumetric Structures

Spring Forces • Force in the direction of the spring and proportional to difference with rest length L_0 $F(P_i, P_j) = K(L_0 - ||P_i P_j||) \frac{P_i P_j}{||P_i P_j||}$ • K is the stiffness of the spring - When K gets bigger, the spring really wants to keep its rest length L_0 F_1 L_0 P_j

How would you simulate hair?

- Similar to string...
- Also... to keep hair straight or curly
 - Add forces based on the angle between segments
 - Add additional springs/constraints stretching between the non-immediate neighbors

Cloth Modeled with Mass-Spring

- Network of masses and springs
- Structural springs:
 - link (i, j) & (i+1, j) and (i, j) & (i, j+1)
- Shear springs
 - link (i, j) & (i+1, j+1) and (i+1, j) & (i, j+1)
- Flexion (Bend) springs
 - link (i, j) & (i+2, j) and (i, j) & (i, j+2)

• Be careful not to index out of bounds on the cloth edges!

- Papers for Today
- Particle Systems
 - Equations of Motion (Physics)
 - Forces: Gravity, Spatial, Damping
 - Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples
 - String, Hair, Cloth
- Stiffness
- Discretization
- Papers for Tuesday
- Worksheet on Volumetric Structures

The Stiffness Issue

- What relative stiffness do we want for the different springs in the network?
- Cloth is barely elastic, shouldn't stretch so much!
- Inverse relationship between stiffness & Δt
- We really want constraints (not springs)
- Many numerical solutions
 - reduce Δt
 - use constraints
 - implicit integration

- ...

- Papers for Today
- Particle Systems
 - Equations of Motion (Physics)
 - Forces: Gravity, Spatial, Damping
 - Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples
 - String, Hair, Cloth
- Stiffness
- Discretization
- Papers for Tuesday
- Worksheet on Volumetric Structures

Cloth Collision

- A cloth has many points of contact
- Often stays in contact
- Requires
 - Efficient collision detection
 - Efficient numerical treatment (stability)

Artistic Simulation of Curly Hair

Iben, Meyer, Petrovic, Soares, Anderson, and Witkin Symposium on Computer Animation 2013

- Papers for Today
- Particle Systems
 - Equations of Motion (Physics)
 - Forces: Gravity, Spatial, Damping
 - Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples
 - String, Hair, Cloth
- Stiffness
- Discretization
- Papers for Tuesday
- Worksheet on Volumetric Structures

Pop Worksheet!	
 For each edentive grid (qu bin ske grid witt allo heid spli 	
and maximize the distance • • • • • • • • • • • • • • • • • • •	