Mass-Spring Systems

High Fashion in Equations

MIRALab, University of Geneva, SIGGRAPH 2007

Simulating Knitted Cloth at the Yarn Level

Kaldor, James, \& Marshner, SIGGRAPH 2008

Last Time?

- Collision Detection \& Conservative Bounding Regions
- Spatial Acceleration Data Structures
- Octree, k-d tree, BSF tree

	y		
	A		

Today

- Papers for Today
- Particle Systems
- Equations of Motion (Physics)
- Forces: Gravity, Spatial, Damping
- Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples
- String, Hair, Cloth
- Stiffness
- Discretization
- Papers for Tuesday
- Worksheet on Volumetric Structures

(simple cloth model used in HW2)

- "Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior", Provot, 1995.

Simple mass-spring system

Improved solution

"Predicting the Drape of Woven Cloth Using Interacting Particles"

- Breen, House, and Wozny
- SIGGRAPH 1994

100\% Cotton Weave

Cloth in Practice (w/ Animation)

OPTIONAL READING

- Baraff, Witkin \& Kass Untangling Cloth SIGGRAPH 2003

Today

- Papers for Today
- Particle Systems
- Equations of Motion (Physics)
- Forces: Gravity, Spatial, Damping
- Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples
- String, Hair, Cloth
- Stiffness
- Discretization
- Papers for Tuesday
- Worksheet on Volumetric Structures

Types of Dynamics

- Point
- Rigid body

- Deformable body (include clothes, fluids, smoke, etc.)

What is a Particle System?

- Collection of many small simple particles that maintain state (position, velocity, color, etc.)
- Particle motion influenced by external force fields
- Integrate the laws of mechanics (ODE Solvers)
- To model: sand, dust, smoke, sparks, flame, water, etc.

Star Trek, The Wrath of Kahn, 1982
Sateesh Malla, 2008,

Particle Motion

- mass m, position x, velocity v
- equations of motion:

$$
\begin{aligned}
& \frac{d}{d t} x(t)=v(t) \\
& \frac{d}{d t} v(t)=\frac{1}{m} F(x, v, t) \quad F=m a
\end{aligned}
$$

- Analytic solutions can be found for some classes of differential equations, but most can't be solved analytically
- Instead, we will numerically approximate a solution to our initial value problem

Higher Order ODEs

- Basic mechanics is a $2^{\text {nd }}$ order ODE:

$$
\frac{d^{2}}{d t^{2}} x=\frac{1}{m} F
$$

- Express as $1^{\text {st }}$ order ODE by defining $v(t)$:

$$
\begin{gathered}
\frac{d}{d t} x(t)=v(t) \\
\frac{d}{d t} v(t)=\frac{1}{m} F(x, v, t) \\
\mathbf{X}=\binom{x}{v} \quad f(X, t)=\binom{v}{\frac{1}{m} F(x, v, t)}
\end{gathered}
$$

X is a vector storing the
$f(X, t)$ describes how to update the state of the particle

Path Through a Field

- $f(\mathbf{X}, t)$ is a vector field defined everywhere
- E.g. a velocity field which may change over time

- $\boldsymbol{X}(t)$ is a path through the field

For a Collection of 3D particles...

$$
\mathbf{X}=\left(\begin{array}{c}
p_{x}^{(1)} \\
p_{y}^{(1)} \\
p_{z}^{(1)} \\
v_{x}^{(1)} \\
v_{y}^{(1)} \\
v_{z}^{(1)} \\
p_{x}^{(2)} \\
p_{y}^{(2)} \\
p_{z}^{(2)} \\
v_{x}^{(2)} \\
v_{y}^{(2)} \\
v_{z}^{(2)} \\
\vdots
\end{array}\right) \quad f(\mathbf{X}, t)=\left(\begin{array}{c}
v_{x}^{(1)} \\
v_{y}^{(1)} \\
v_{z}^{(1)} \\
\\
\frac{1}{m_{1}} F_{x}^{(1)}(\mathbf{X}, t) \\
\frac{1}{m_{1}} F_{y}^{(1)}(\mathbf{X}, t) \\
\frac{1}{m_{1}} F_{z}^{(1)}(\mathbf{X}, t) \\
v_{x}^{(2)} \\
v_{y}^{(2)} \\
v_{z}^{(2)} \\
\frac{1}{m_{2}} F_{x}^{(2)}(\mathbf{X}, t) \\
\frac{1}{m_{2}} F_{y}^{(2)}(\mathbf{X}, t) \\
\frac{1}{m_{2}} F_{z}^{(2)}(\mathbf{X}, t) \\
\vdots
\end{array}\right)
$$

more generally, we can define X as a huge vector storing the current state of all particles in a system

Today

- Papers for Today
- Particle Systems
- Equations of Motion (Physics)
- Forces: Gravity, Spatial, Damping
- Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples
- String, Hair, Cloth
- Stiffness
- Discretization
- Papers for Tuesday
- Worksheet on Volumetric Structures

Forces: Gravity

- Simple gravity: depends only on particle mass

- N-body problem: depends on all other particles
- Magnitude inversely proportional to square distance $-F_{i j}=G m_{i} m_{j} / r^{2}$

Forces: Spatial Fields

- Force on particle i depends only on position of i
- wind
- attractors
- repulsers
- vortices
- Can depend on time (e.g., wind gusts)
- Note: these forces will generally add energy to the system, and thus may need damping...

Forces: Damping

$$
f^{(i)}=-d v^{(i)}
$$

- Force on particle i depends only on velocity of i
- Force opposes motion
- A hack mimicking real-world friction/drag
- Removes energy, so system can settle
- Small amount of damping can stabilize solver
- Too much damping makes motion too glue-like

Questions?

http://www.lactamme.polytechnique.fr/Mosaic/images/NCOR.U1.2048.D/display.html

Today

- Papers for Today
- Particle Systems
- Equations of Motion (Physics)
- Forces: Gravity, Spatial, Damping
- Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples
- String, Hair, Cloth
- Stiffness
- Discretization
- Papers for Tuesday
- Worksheet on Volumetric Structures

Euler's Method

- Examine $f(\mathbf{X}, t)$ at (or near) current state
- Take a step of size h to new value of \mathbf{X} :

$$
\left.\begin{array}{c}
t_{1}=t_{0}+h
\end{array} \begin{array}{c}
\begin{array}{c}
\text { update the position } \\
\text { by adding a } \\
\text { little bit of the } \\
\text { current velocity } \\
\text { \& }
\end{array} \\
\mathbf{X}=\left(\begin{array}{c}
x \\
\text { update the velocity } \\
\text { upd } \\
\text { by adding a little bit } \\
\text { of the current } \\
\text { acceleration }
\end{array}\right. \\
\frac{1}{m} F(x, v, t)
\end{array}\right)
$$

- Piecewise-linear approximation to the curve

Effect of Step Size

- Step size controls accuracy
- Smaller steps more closely follow curve
- For animation, we may want to take many small steps per frame
- How many frames per second for animation?
- How many steps per frame?

Euler's Method: Inaccurate

- Simple example: particle in stable circular orbit around planet (origin)
- Current velocity is always tangent to circle
- Force is perpendicular to circle

- Euler method will spiral outward no matter how small h is

Euler's Method: Unstable

- Problem: $f(x . t)=-k x$
- Solution: $x(t)=x_{0} e^{-k t}$
- Limited step size:

$$
\begin{aligned}
& x_{1}=x_{0}(1-h k) \\
& \begin{cases}h \leq 1 / k & \text { ok } \\
h>1 / k & \text { oscillates } \pm \\
h>2 / k & \text { explodes }\end{cases}
\end{aligned}
$$

- If k is big, h must be smalı

Analysis using Taylor Series

- Expand exact solution $\mathbf{X}(t)$

$$
\mathbf{X}\left(t_{0}+h\right)=\mathbf{X}\left(t_{0}\right)+\left.h\left(\frac{d}{d t} \mathbf{X}(t)\right)\right|_{t_{0}}+\left.\frac{h^{2}}{2!}\left(\frac{d^{2}}{d t^{2}} \mathbf{X}(t)\right)\right|_{t_{0}}+\frac{h^{3}}{3!}(\cdots)+\cdots
$$

- Euler's method:

$$
\begin{aligned}
\mathbf{X}\left(t_{0}+h\right)=\mathbf{X}_{0}+ & h f\left(\mathbf{X}_{0}, t_{0}\right) \quad \ldots+O\left(h^{2}\right) \text { error } \\
h \rightarrow h / 2 \Rightarrow \text { error } & \rightarrow \text { error } / 4 \text { per step } \times \text { twice as many steps } \\
& \rightarrow \text { error } / 2
\end{aligned}
$$

- First-order method: Accuracy varies with h
- To get 100x better accuracy need 100x more steps

Can we do better than Euler's Method?

- Problem: f has varied along the step
- Idea: look at f at the arrival of the step and compensate for variation

2nd-Order Methods

- Midpoint:
- $1 / 2$ Euler step
- evaluate f_{m}
- full step using f_{m}
- Trapezoid:
- Euler step (a)
- evaluate f_{1}
- full step using f_{1} (b)
- average (a) and (b)

- Midpoint \& trapezoid do not yield exactly the same result, but they have same order of accuracy

Comparison: Euler, Midpoint, Runge-Kutta

- initial position: $(1,0,0)$

A $4^{\text {th }}$ order method!

- initial velocity: $(0,5,0)$
- force field: pulls particles to origin with magnitude proportional to distance from origin
- correct answer: circle

Euler will always diverge (even with small dt)

Comparison: Euler, Midpoint, Runge-Kutta

- initial position: $(0,-2,0)$
- initial velocity: $(1,0,0)$
- force field: pulls particles to line $\mathrm{y}=0$ with magnitude proportional to distance from line
- correct answer: sine wave

Decreasing the timestep (dt) improves the accuracy

Questions?

Interactive Animation of Structured Deformable Objects Desbrun, Schröder, \& Barr 1999

Today

- Papers for Today
- Particle Systems
- Equations of Motion (Physics)
- Forces: Gravity, Spatial, Damping
- Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples
- String, Hair, Cloth
- Stiffness
- Discretization
- Papers for Tuesday
- Worksheet on Volumetric Structures

How would you simulate a string?

- Each particle is linked to two particles
- Forces try to keep the distance between particles constant
- What force?

Spring Forces

- Force in the direction of the spring and proportional to difference with rest length L_{0}
$F\left(P_{i}, P_{j}\right)=K\left(L_{0}-\left\|\overrightarrow{P_{i} P_{j}}\right\|\right) \frac{\overrightarrow{P_{i} P_{j}}}{\left\|P_{i} P_{j}\right\|}$
- K is the stiffness of the spring
- When K gets bigger, the spring really wants to keep its rest length

${ }_{P_{1}}-\mathrm{MWWF}_{\mathrm{P}_{\mathrm{j}}}$

How would you simulate a string?

- Springs link the particles
- Springs try to keep their rest lengths and preserve the length of the string
- Problems?
- Stretch, actual length will be greater than rest length
- Numerical oscillation

How would you simulate hair?

- Similar to string...
- Also... to keep hair straight or curly
- Add forces based on the angle between segments
- Add additional

springs/constraints
stretching between the non-immediate neighbors

Cloth Modeled with Mass-Spring

- Network of masses and springs
- Structural springs:
$-\operatorname{link}(\mathrm{i}, \mathrm{j}) \&(\mathrm{i}+1, \mathrm{j})$ and (i, j) \& (i, j+1)
- Shear springs
- link (i, j) \& (i+1, j+1) and $(i+1, j) \&(i, j+1)$
- Flexion (Bend) springs
- link (i, j) \& (i+2, j)
 and (i, j) \& (i, j+2)
- Be careful not to index out of bounds on the cloth edges!

Today

- Papers for Today
- Particle Systems
- Equations of Motion (Physics)
- Forces: Gravity, Spatial, Damping
- Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples
- String, Hair, Cloth
- Stiffness
- Discretization
- Papers for Tuesday
- Worksheet on Volumetric Structures

The Stiffness Issue

- What relative stiffness do we want for the different springs in the network?
- Cloth is barely elastic, shouldn't stretch so much!
- Inverse relationship between stiffness \& Δt
- We really want constraints (not springs)
- Many numerical solutions
- reduce Δt
- use constraints
- implicit integration
- ...

How would you simulate a string?

- Springs link the particles. Problems?
- Stretch, actual length will be greater than rest length
- Numerical oscillation

- Rigid, fixed-length bars link the particles
- Dynamics \&
- Constraints
(must be solved simultaneously non-trivial, even for tiny systems)

The Discretization Problem

- What happens if we discretize our cloth more finely, or with a different mesh structure?

- Do we get the same behavior?
- Usually not! It takes a lot of effort to design a scheme that does not depend on the discretization.
- Using (explicit) Euler, how many timesteps before a force propagates across the mesh?

Explicit vs. Implicit Integration

- With an explicit/forward integration scheme:

$$
\mathbf{y}_{k+1}=\mathbf{y}_{k}+h \mathbf{g}\left(\mathbf{y}_{k}\right) \quad \begin{aligned}
& \text { The future state (position \& velocity) of t this particle }
\end{aligned}
$$

we must use a very small timestep to simulate stable, stiff cloth.

- Alternatively we can use an implicit/backwards scheme:

$$
\begin{aligned}
\mathbf{y}_{k+1} & =\mathbf{y}_{k}+h \mathbf{g}\left(\mathbf{y}_{k+1}\right) \\
\mathbf{y}_{k} & =\mathbf{y}_{k+1}-h \mathbf{g}\left(\mathrm{y}_{k+1}\right)
\end{aligned}
$$

The future state of this particle depends on the current state AND the future state.

Solving one step is much more expensive (Newton's Method, Conjugate Gradients, ...) but overall faster than the thousands of explicit timesteps required for very stiff springs.

- Larger timesteps are possible with implicit methods.

Questions?

- Dynamic motion driven by animation

Today

- Papers for Today
- Particle Systems
- Equations of Motion (Physics)
- Forces: Gravity, Spatial, Damping
- Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples
- String, Hair, Cloth
- Stiffness
- Discretization
- Papers for Tuesday
- Worksheet on Volumetric Structures

Cloth Collision

- A cloth has many points of contact
- Often stays in contact
- Requires
- Efficient collision detection

- Efficient numerical treatment (stability)

Artistic Simulation of Curly Hair

Iben, Meyer, Petrovic, Soares, Anderson, and Witkin Symposium on Computer Animation 2013

"FoldSketch: Enriching Garments with Physically Reproducible Folds"

 Li, Sheffer, Grinspun, \& Vining, SIGGRAPH 2018.
(a) input

(b) patterns

(c) output

(d) manufactured flag

"An Implicit Frictional Contact Solver for

 Adaptive Cloth Simulation"Li, Daviet, Narain, Bertails-Descoubes, Overby, Brown, \& Boissieux, SIGGRAPH 2018.

Today

- Papers for Today
- Particle Systems
- Equations of Motion (Physics)
- Forces: Gravity, Spatial, Damping
- Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples
- String, Hair, Cloth
- Stiffness
- Discretization
- Papers for Tuesday
- Worksheet on Volumetric Structures

Pop Worksheet!

- Fornonh adention gric
(qu
bin
ske
gric
witl
allo
hei
spli
minimi
and maximize the distance

from each point to the split

