The Rendering Equation

Rendering with Natural Light

Paul Debevec et. al, SIGGRAPH 1998

Image Based Lighting

Paul Debevec et al, SIGGRAPH 2000

Last Time?

- Local Illumination
- BRDF
- Ideal Diffuse Reflectance

- Ideal Specular Reflectance
- The Phong Model
- Radiosity Equation/Matrix

- Calculating the Form Factors

Today

- Paper for Today
- Leftover from Last Time:
- Radiosity Overview
- Calculating the Form Factors
- Advanced Radiosity
- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Worksheet
- Papers for Next Time

Reading for Today

The Cornell Box

- Careful calibration and measurement allows for comparison between physical scene \& simulation

Today

- Paper for Today
- Leftover from Last Time:
- Radiosity Overview
- Calculating the Form Factors
- Advanced Radiosity
- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Worksheet
- Papers for Next Time

Radiosity Overview

- Surfaces are assumed to be perfectly Lambertian (diffuse)
- reflect incident light in all directions with equal intensity
- The scene is divided into a set of small areas, or patches.
- The radiosity, B_{i}, of patch i is the total rate of energy leaving a surface. The radiosity over a patch is constant.
- Units for radiosity:

Watts / steradian * meter ${ }^{2}$

Discrete Radiosity Equation

Discretize the scene into n patches, over which the radiosity is constant

light leaving
patch i

Radiosity in Matrix Form

$$
B_{i}=E_{i}+\rho_{i} \sum_{\substack{j=\\ 1}}^{n} F_{i j} B_{j}
$$

n simultaneous equations with n unknown B_{i} values can be written in matrix form:

$$
\left[\begin{array}{cccc}
1-\rho_{1} F_{11} & -\rho_{1} F_{12} & \cdots & -\rho_{1} F_{1 n} \\
-\rho_{2} F_{21} & 1-\rho_{2} F_{22} & & \\
\vdots & & \ddots & \\
-\rho_{n} F_{n 1} & \cdots & \cdots & 1-\rho_{n} F_{n n}
\end{array}\right]\left[\begin{array}{r}
B_{1} \\
B_{2} \\
\vdots \\
B_{n}
\end{array}\right]=\left[\begin{array}{r}
E_{1} \\
E_{2} \\
\vdots \\
E_{n}
\end{array}\right]
$$

A solution yields a single radiosity value B_{i} for each patch in the environment, a view-independent solution.

Solving the Radiosity Matrix

- Initialize all radiosity values to 0
- Each iteration, update the radiosity of each patch by gathering the contribution of radiosities from all other

- Radiosity values only increase on each iteration
- This method is fundamentally a Gauss-Seidel relaxation

Interpolating Vertex Radiosities

- B_{i} radiosity values are constant over the extent of a patch.
- How are they mapped to the vertex radiosities (intensities) needed by
 the renderer?
- Average the radiosities of patches that contribute to the vertex
- Vertices on the edge of a surface are assigned values extrapolation

Questions?

Factory simulation. 30,000 patches.
Program of Computer Graphics, Cornell University.

Today

- Paper for Today
- Leftover from Last Time:
- Radiosity Overview
- Calculating the Form Factors
- Advanced Radiosity
- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Worksheet
- Papers for Next Time

Calculating the Form Factor F_{ij}

- $F_{i j}=$ fraction of light energy leaving patch j that arrives at patch i
- Takes account of both:
- geometry (size, orientation \& position)
- visibility (are there any occluders?)

Calculating the Form Factor F_{i}

- $\mathrm{F}_{\mathrm{ij}}=$ fraction of light energy leaving patch j that arrives at patch i

$$
\mathrm{F}_{\mathrm{ij}}=\frac{1}{\mathrm{~A}_{\mathrm{i}}} \int_{\mathrm{A}_{\mathrm{i}}} \int_{\mathrm{A}_{\mathrm{j}}} \frac{\cos \theta_{\mathrm{i}} \cos \theta_{\mathrm{j}}}{\pi \mathrm{r}^{2}} \mathrm{~V}_{\mathrm{ij}} \mathrm{dA}_{\mathrm{j}} \mathrm{dA}_{\mathrm{i}}
$$

Form Factor Determination

The Nusselt analog: the form factor of a patch is equivalent to the fraction of the unit circle that is formed by taking the projection of the patch onto the hemisphere surface and projecting it down onto the circle.

Hemicube Algorithm

- A hemicube is constructed around the center of each patch
- Faces of the hemicube are divided into "pixels"
- Each patch is projected (rasterized) onto the faces of the hemicube
- Each pixel stores its pre-computed form factor The form factor for a particular patch is just the sum of the pixels it overlaps
- Patch occlusions are handled similar to z-buffer rasterization

Form Factor from Ray Casting

- Cast n rays between the two patches
- Compute visibility (what fraction of rays do not hit an occluder)

Use this for HW3!

- Integrate the point-to-point form factor
- Permits the computation of the patch-to-patch form factor, as opposed to point-to-patch

Calculating the Form Factor F_{ij}

- $F_{i j}=$ fraction of light energy leaving patch j that arrives at patch i

patch i

$$
\mathrm{F}_{\mathrm{ij}}=\frac{1}{\mathrm{~A}_{\mathrm{i}}} \int_{\mathrm{A}_{\mathrm{i}} \mathrm{~A}_{\mathrm{j}}} \frac{\cos \theta_{\mathrm{i}} \cos \theta_{\mathrm{j}}}{\pi \mathrm{r}^{2}} \mathrm{~V}_{\mathrm{ij}} \mathrm{dA}_{\mathrm{j}} \mathrm{dA}_{\mathrm{i}}
$$

Form Factor Determination

The Nusselt analog: the form factor of a patch is equivalent to the fraction of the unit circle that is formed by taking the projection of the patch onto the hemisphere surface and projecting it down onto the circle.

Hemicube Algorithm

- A hemicube is constructed around the center of each patch
- Faces of the hemicube are divided into "pixels"
- Each patch is projected (rasterized) onto the faces of the hemicube
- Each pixel stores its pre-computed form factor The form factor for a particular patch is just the sum of the pixels it overlaps
- Patch occlusions are handled similar to z-buffer rasterization

Form Factor from Ray Casting

- Cast n rays between the two patches
- Compute visibility (what fraction of rays do not hit an occluder)

Use this for HW3!

- Integrate the point-to-point form factor
- Permits the computation of the patch-to-patch form factor, as opposed to point-to-patch

Questions?

Lightscape http://www.lightscape.com

Today

- Paper for Today
- Leftover from Last Time:
- Radiosity Overview
- Calculating the Form Factors
- Advanced Radiosity
- Progressive Radiosity
- Adaptive Subdivision
- Discontinuity Meshing
- Hierarchical Radiosity
- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Worksheet
- Papers for Next Time

Stages in a Radiosity Solution

Progressive Refinement

- Goal: Provide frequent and timely updates to the user during computation
- Key Idea: Update the entire image at every iteration, rather
 than a single patch
- How? Instead of summing the light received by one patch, distribute the radiance of the patch with the most undistributed radiance.

Reordering the Solution for PR

Shooting: the radiosity of all patches is updated for each iteration:
$\left[\begin{array}{r}B_{1} \\ B_{2} \\ \vdots \\ \vdots \\ B_{n}\end{array}\right]=\left[\begin{array}{r}B_{1} \\ B_{2} \\ \vdots \\ \vdots \\ B_{n}\end{array}\right]+\left[\begin{array}{lll}\cdots & \rho_{1} F_{1 i} & \cdots \\ \cdots & \rho_{2} F_{2 i} & \\ & & \\ & & \\ \cdots & \rho_{n} F_{n i} & \cdots\end{array}\right]\left[\begin{array}{r} \\ \vdots \\ B_{i} \\ \vdots \\ \end{array}\right]$

This method is fundamentally a Southwell relaxation

Progressive Refinement w/out Ambient Term

Progressive Refinement with Ambient Term

Questions?

Lightscape

Today

- Paper for Today
- Leftover from Last Time:
- Radiosity Overview
- Calculating the Form Factors
- Advanced Radiosity
- Progressive Radiosity
- Adaptive Subdivision
- Discontinuity Meshing
- Hierarchical Radiosity
- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Worksheet
- Papers for Next Time

Increasing the Accuracy of the Solution

What's wrong with this picture?

- Image quality is a function of patch size
- Compute a solution on a uniform initial mesh, then refine the mesh in areas that exceed some error tolerance:
- shadow boundaries
- other areas with a high radiosity gradient

Adaptive Subdivision of Patches

Coarse patch solution (145 patches)

Improved solution (1021 subpatches)

Discontinuity Meshing

- Limits of umbra and penumbra
source
- Captures nice shadow boundaries
- Complex geometric computation to construct mesh
"Fast and Accurate Hierarchical Radiosity Using Global Visibility" Durand, Drettakis, \& Puech 1999

Hierarchical Radiosity

- Group elements when the light exchange is not important
- Breaks the quadratic complexity
- Control non trivial, memory cost

Practical Problems with Radiosity

- Meshing
- memory
- robustness
- Form factors
- computation
- Diffuse limitation

Cow-cow form factor?

- extension to specular takes too much memory

Questions?

Today

- Paper for Today
- Leftover from Last Time:
- Radiosity Overview
- Calculating the Form Factors
- Advanced Radiosity
- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Worksheet
- Papers for Next Time

Does Ray Tracing Simulate Physics?

- No.... traditional ray tracing is also called "backward" ray tracing
- In reality, photons actually travel from the light to the eye

Forward Ray Tracing

- Start from the light source
- But very, very low probability to reach the eye
- What can we do about it?
- Always send a ray to the eye.... still not efficient

Henrik Wann Jensen

Transparent Shadows?

- What to do if the shadow ray sent to the light source intersects a transparent object?
- Pretend it's opaque?
- Multiply by transparency color? (ignores refraction \& does not produce caustics)
- Unfortunately, ray tracing is full of dirty tricks

Is this Traditional Ray Tracing?

Images by Henrik Wann Jensen

No. Refraction and complex reflections for illumination are not handled properly in traditional (backward) ray tracing.

Refraction and the Lifeguard Problem

- Running is faster than swimming

Lifeguard

Today

- Paper for Today
- Leftover from Last Time:
- Radiosity Overview
- Calculating the Form Factors
- Advanced Radiosity
- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Worksheet
- Papers for Next Time

The Rendering Equation

- Clean mathematical framework for light-transport simulation
- At each point, outgoing light in one direction is the integral of incoming light in all directions multiplied by reflectance property

Reading for Next Time: after break!

-"The Rendering Equation", Kajiya, SIGGRAPH 1986

The Rendering Equation

$$
L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int \rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A
$$

$L\left(x^{\prime}, \omega^{\prime}\right)$ is the radiance from a point on a surface in a given direction ω^{\prime}

The Rendering Equation

$$
L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int \rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A
$$

$E\left(x^{\prime}, \omega^{\prime}\right)$ is the emitted radiance from a point: E is non-zero only if x^{\prime} is emissive (a light source)

The Rendering Equation

$$
L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int \rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A
$$

Sum the contribution from all of the other surfaces in the scene

The Rendering Equation

$$
L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int \rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A
$$

For each x, compute $L(x, \omega)$, the radiance at point x in the direction ω (from x to x^{\prime})

The Rendering Equation

$$
L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int \rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A
$$

scale the contribution by $\rho_{x^{\prime}}(\omega, \omega)$, the reflectivity (BRDF) of the surface at x^{\prime}

The Rendering Equation

$L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int \rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A$
For each x, compute $V\left(x, x^{\prime}\right)$,
the visibility between x and x^{\prime} :
1 when the surfaces are unobstructed along the direction ω, 0 otherwise

The Rendering Equation

$$
L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int \rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A
$$

For each x , compute $\mathrm{G}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$, which describes the on the geometric relationship between the two surfaces at x and x '

Intuition about $\mathrm{G}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$?

- Which arrangement of two surfaces will yield the greatest transfer of light energy? Why?

Rendering Equation \rightarrow Radiosity

$L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int \rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A$

> | Ladiosity assumption: | |
| :--- | :--- |
| perfectly diffuse surfaces (not directional) | |
| $\mathrm{B}_{\mathrm{x}^{\prime}}=$ | |
| $=$ | $\mathrm{E}_{\mathrm{x}^{\prime}}+\rho_{\mathrm{x}^{\prime}} \mathrm{S}$ | $\mathrm{B}_{\mathrm{x}} \mathrm{G}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{V}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$)

Questions?

Today

- Paper for Today
- Leftover from Last Time:
- Radiosity Overview
- Calculating the Form Factors
- Advanced Radiosity
- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Worksheet
- Papers for Next Time

Pop Worksheet!

A

Today

- Paper for Today
- Leftover from Last Time:
- Radiosity Overview
- Calculating the Form Factors
- Advanced Radiosity
- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Worksheet
- Papers for Next Time

Readings for Next Time:

- "Rendering Caustics on Non-Lambertian Surfaces", Henrik Wann Jensen, Graphics Interface 1996.

- "Global Illumination using Photon Maps", Henrik Wann Jensen, Rendering Techniques 1996.

