The Rendering Equation & Irradiance Caching & Photon Mapping

Image from Zachary Lynn What's a good value for *epsilon*? Depends on hardware precision & scene dimensions

Final Project Brainstorming

- Each student should post two different ideas for a final project on the forum.
 - For each idea:
 - Briefly describe the idea, your motivation for it, and an example of the potential result.
 - What is the significant/interesting technical implementation challenge?
 - Have you already decided on one idea? Which one?
 - Do you already have a partner? Who? (even if you have chosen an idea and/or a partner everyone must post 2 different ideas)
 - Due Wednesday 3/17 @ 11:59pm)
- Teams of 2 strongly recommended (individuals & teams >2 require instructor permission)
- Projects from prior terms are on the website

The Light of Mies van der Rohe

Henrik Wann Jensen, SIGGRAPH 2000

Is this Traditional Ray Tracing?

Images by Henrik Wann Jensen

No. Refraction and complex reflections for illumination are not handled properly in traditional (backward) ray tracing.

- The Rendering Equation
- Worksheet on Progressive Radiosity
- Ray Casting vs. Ray Tracing vs.
 Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Papers for Today
- Ray Grammar
- Papers for Friday

The Rendering Equation

- Clean mathematical framework for light-transport simulation
- At each point, outgoing light in one direction is the integral of incoming light in all directions multiplied by reflectance property

Questions?

- The Rendering Equation
- Worksheet on Progressive Radiosity
- Ray Casting vs. Ray Tracing vs.
 Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Papers for Today
- Ray Grammar
- Papers for Friday

Pop Worksheet!	
grey wall	Perform 5 iterations of progressive refinement radiosity
rediance @ iten 1 / /	
radiance @ iter 1 (1 undistributed @ iter 1	

- The Rendering Equation
- Worksheet on Progressive Radiosity
- Ray Casting vs. Ray Tracing vs. Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Papers for Today
- Ray Grammar
- Papers for Friday

- Cast a ray from the eye through each pixel
- Trace secondary rays (light, reflection, refraction)

Monte Carlo Ray Tracing

- Cast a ray from the eye through each pixel
- Cast random rays to accumulate radiance contribution
 - Recurse to solve the Rendering Equation

- The Rendering Equation
- Worksheet on Progressive Radiosity
- Ray Casting vs. Ray Tracing vs.
 Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Papers for Today
- Ray Grammar
- Papers for Friday

Direct Illumination

Indirect Illumination: smooth

Irradiance Cache

- The indirect illumination is smooth
- Store the indirect illumination

Irradiance Cache

- Interpolate nearby cached values
- But do full calculation for direct lighting

Questions?

- Why do we need "good" random numbers?
 - With a fixed random sequence, we see the structure in the error

- The Rendering Equation
- Worksheet on Progressive Radiosity
- Ray Casting vs. Ray Tracing vs.
 Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Papers for Today
- Ray Grammar
- Papers for Friday

Storing the Photon Map

- Efficiently store photons for fast access
- Use hierarchical spatial structure (kd-tree)

Rendering with Photon Map

- Cast primary rays
- For secondary rays: reconstruct irradiance using k closest photons
- Combine with irradiance caching and other techniques

Photon Map Results

- The Rendering Equation
- Worksheet on Progressive Radiosity
- Ray Casting vs. Ray Tracing vs. Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Papers for Today
- Ray Grammar
- Papers for Friday

Questions?

- The Rendering Equation
- Worksheet on Progressive Radiosity
- Ray Casting vs. Ray Tracing vs.
 Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Papers for Today
- Ray Grammar
- Papers for Friday

Readings for Next Time: (pick one)

"Correlated Multi-Jittered Sampling", Andrew Kensler, Pixar Technical Memo, 2013

Figure 1: The canonical arrangement. Heavy lines show the boundaries of the 2D jitter cells. Light lines show the horizontal and vertical substrata of N-rooks sampling. Samples are jittered within the subcells.

Figure 3: With correlated shuffling.

Figure 9: Polar warp with m = 22, n = 7.

⁹G. J. Ward and P. S. Heckbert. Irradiance gradients. In *Third Eurographics Rendering Workshop*, pages 85–98, May 1992.

Readings for Next Time: (pick one)

"Implicit Visibility and Antiradiance for Interactive Global Illumination"

Dachsbacher, Stamminger, Drettakis, and Durand Siggraph 2007

