The Rendering Equation \& Irradiance Caching \& Photon Mapping

HW3: Raytracing \& Epsilon

Final Project Brainstorming

- Each student should post two different ideas for a final project on the forum.
- For each idea:
- Briefly describe the idea, your motivation for it, and an example of the potential result.
- What is the significant/interesting technical implementation challenge?
- Have you already decided on one idea? Which one?
- Do you already have a partner? Who?
(even if you have chosen an idea and/or a partner everyone must post 2 different ideas)
- Due Wednesday 3/17 @ 11:59pm)
- Teams of 2 strongly recommended
(individuals \& teams >2 require instructor permission)
- Projects from prior terms are on the website

The Light of Mies van der Rohe

Is this Traditional Ray Tracing?

Images by Henrik Wann Jensen

No. Refraction and complex reflections for illumination are not handled properly in traditional (backward) ray tracing.

Refraction and the Lifeguard Problem

- Running is faster than swimming

Lifeguard

Today

- The Rendering Equation
- Worksheet on Progressive Radiosity
- Ray Casting vs. Ray Tracing vs.

Monte-Carlo Ray Tracing vs. Path Tracing

- Irradiance Caching
- Photon Mapping
- Papers for Today
- Ray Grammar
- Papers for Friday

The Rendering Equation

- Clean mathematical framework for light-transport simulation
- At each point, outgoing light in one direction is the integral of incoming light in all directions multiplied by reflectance property

"The Rendering Equation", Kajiya, SIGGRAPH 1986

The Rendering Equation

$L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int \rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A$
$\mathrm{L}\left(\mathrm{x}^{\prime}, \omega^{\prime}\right)$ is the radiance from a point on a surface in a given direction ω^{\prime}

The Rendering Equation

$$
L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int \rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A
$$

$E\left(x^{\prime}, \omega^{\prime}\right)$ is the emitted radiance from a point: E is non-zero only if x^{\prime} is emissive (a light source)

The Rendering Equation

$$
L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int \rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A
$$

Sum the contribution from all of the other surfaces in the scene

The Rendering Equation

$$
L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int \rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A
$$

For each x, compute $L(x, \omega)$, the radiance at point x in the direction ω (from x to x^{\prime})

The Rendering Equation

$$
L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int \rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A
$$

scale the contribution by $\rho_{x^{\prime}}(\omega, \omega$ '), the reflectivity (BRDF) of the surface at x^{\prime}

The Rendering Equation

$L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int \rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A$
For each x, compute $V\left(x, x^{\prime}\right)$,
the visibility between x and x^{\prime} :
1 when the surfaces are unobstructed along the direction ω, 0 otherwise

The Rendering Equation

$$
L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int \rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A
$$

For each x , compute $\mathrm{G}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$, which describes the on the geometric relationship between the two surfaces at x and x '

Intuition about $\mathrm{G}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$?

- Which arrangement of two surfaces will yield the greatest transfer of light energy? Why?

Rendering Equation \rightarrow Radiosity

$L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int \rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A$

> | Ladiosity assumption: | |
| :--- | :--- |
| perfectly diffuse surfaces (not directional) | |
| $\mathrm{B}_{\mathrm{x}^{\prime}}=$ | |
| $=$ | $\mathrm{E}_{\mathrm{x}^{\prime}}+\rho_{\mathrm{x}^{\prime}} \mathrm{S}$ | $\mathrm{B}_{\mathrm{x}} \mathrm{G}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{V}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$)

Questions?

Today

- The Rendering Equation
- Worksheet on Progressive Radiosity
- Ray Casting vs. Ray Tracing vs. Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Papers for Today
- Ray Grammar
- Papers for Friday

Pop Worksheet!

Today

- The Rendering Equation
- Worksheet on Progressive Radiosity
- Ray Casting vs. Ray Tracing vs. Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Papers for Today
- Ray Grammar
- Papers for Friday

Ray Casting

- Cast a ray from the eye through each pixel

Ray Tracing

- Cast a ray from the eye through each pixel
- Trace secondary rays (light, reflection, refraction)

Monte Carlo Ray Tracing

- Cast a ray from the eye through each pixel
- Cast random rays to accumulate radiance contribution
- Recurse to solve the Rendering Equation

Sample the full hemisphere of incoming light for every surface (diffuse materials too!)

Note: Always sample the primary light ?

(Monte Carlo) Path Tracing

- Trace only one secondary ray per recursion
- But send many primary rays per pixel (performs antialiasing as well)

Ray Tracing vs. Path Tracing

2 bounces
5 glossy samples
5 shadow samples
How many rays cast per pixel?
1 main ray +5 shadow rays + 5 glossy rays $+5 \times 5$ shadow rays + $5 * 5$ glossy rays $+5 \times 5 \times 5$ shadow rays
= 186 rays

How many 3 bounce paths can we trace per pixel for the same cost?

186 rays / 8 ray casts per path
$=\sim 23$ paths
Which will probably have less error?

Questions?

10 paths/pixel

100 paths/pixel

Today

- The Rendering Equation
- Worksheet on Progressive Radiosity
- Ray Casting vs. Ray Tracing vs.

Monte-Carlo Ray Tracing vs. Path Tracing

- Irradiance Caching
- Photon Mapping
- Papers for Today
- Ray Grammar
- Papers for Friday

Path Tracing is costly

- Needs tons of rays per pixel

Direct Illumination

Global Illumination

Indirect Illumination: smooth

Irradiance Cache

- The indirect illumination is smooth
- Store the indirect illumination

Irradiance Cache

- Interpolate nearby cached values
- But do full calculation for direct lighting

Irradiance Cache

Questions?

- Why do we need "good" random numbers?
- With a fixed random sequence, we see the structure in the error

Today

- The Rendering Equation
- Worksheet on Progressive Radiosity
- Ray Casting vs. Ray Tracing vs. Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Papers for Today
- Ray Grammar
- Papers for Friday

Photon Mapping

- Preprocess: cast rays from light sources
- independent of viewpoint

Photon Mapping

- Store photons
- position + light power + incoming direction

Storing the Photon Map

- Efficiently store photons for fast access
- Use hierarchical spatial structure (kd-tree)

Rendering with Photon Map

- Cast primary rays
- For secondary rays: reconstruct irradiance using k closest photons
- Combine with irradiance caching and other techniques

Photon Map Results

Readings for Today:

- "Rendering Caustics on Non-Lambertian Surfaces", Henrik Wann Jensen, Graphics Interface 1996.

- "Global Illumination using Photon Maps", Henrik Wann Jensen, Rendering Techniques 1996.

Photon Mapping - Caustics

- Special photon map for specular reflection and refraction

Comparison

Path Tracing
1000 paths/pixel
Photon mapping

(similar rendering time)

Closest Photon Details

- Find the tightest sphere that captures k photons
- NOTE: HW3 code gives you all photons that might be in the query bounding box (you need to test for exact box and/or exact sphere)
- Divide the energy from those photons by the surface area covered by that sphere
- What about thin surfaces, concave corners, \& convex corners?

HW3: Photons in the k-d tree

- You start with query point \& radius (red)
- You give the KDTree::CollectPhotonsInBox function a bounding box (yellow)
- The algorithm finds all k-d tree cells that overlap with bounding box (blue)
- The function returns all photons in those cells
- You need to discard all photons not in your original query radius

Today

- The Rendering Equation
- Worksheet on Progressive Radiosity
- Ray Casting vs. Ray Tracing vs.

Monte-Carlo Ray Tracing vs. Path Tracing

- Irradiance Caching
- Photon Mapping
- Papers for Today
- Ray Grammar
- Papers for Friday

Ray Grammar

- Classify local interaction:

E = eye
L = light

G = glossy scattering
D = diffuse scattering

Classic Ray Casting/Tracing

Ray casting: L D E

Ray tracing: L D S* E
"Adaptive Radiosity Textures for Bi-directional Ray Tracing" Heckbert SIGGRAPH 1990

Photon Tracing

Radiosity: L D* E

Caustics: L S* D E (or worse!)
"Adaptive Radiosity Textures for Bi-directional Ray Tracing" Heckbert SIGGRAPH 1990

Questions?

Today

- The Rendering Equation
- Worksheet on Progressive Radiosity
- Ray Casting vs. Ray Tracing vs. Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Papers for Today
- Ray Grammar
- Papers for Friday

Readings for Next Time: (pick one)

"Correlated Multi-Jittered Sampling",
Andrew Kensler, Pixar Technical Memo, 2013

Figure I: The canonical arrangement. Heavy lines show the boundaries of the 2 D jitter cells. Light lines show the horizontal and vertical substrata of N-rooks sampling. Samples are jittered within the subcells.

Figure 3: With correlated shuffling.

Figure 9: Polar warp with $m=22, n=7$.
${ }^{3}$ G. J. Ward and P. S. Heckbert. Irradiance gradients. In Third Eurographics Rendering Workshop, pages 85-98, May 1992.

Readings for Next Time: (pick one)

"Implicit Visibility and Antiradiance for Interactive Global Illumination"

Dachsbacher, Stamminger, Drettakis, and
Durand
Siggraph 2007

