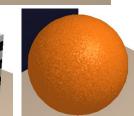
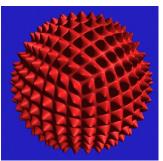

Procedural Modeling


Upgrades, Anya Belkina, 2010

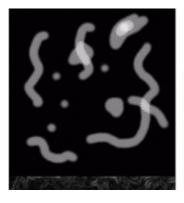
Homework 4

- Create some geometry
 - Reflected object & floor
 - Silhouette edges
 - Shadow polygons
 - Make sure your polygons aren't doubled up
 - Make sure your polygons are oriented consistently
- · Mess with the stencil buffer
 - Don't just blindly copy code from the tutorial
 - Use the web to read the man page for each instruction & its parameters
- Be creative with shaders
 - Hopefully everyone can get the examples to compile & run

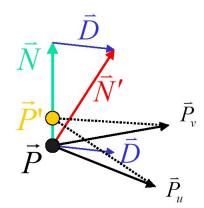


Last Time?

- Modern Graphics Hardware
- Cg Programming Language
- Gouraud Shading vs.
 Phong Normal Interpolation
- Bump, Displacement, & Environment Mapping

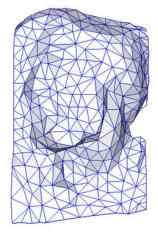

From Last Time

- Many "Mapping" techniques
 - Bump Mapping
 - Displacement Mapping
 Parallax Mapping
 - Environment Mapping
 - Light Mapping
- Normal Mapping


 - Parallax Occlusion Mapping

Bump Mapping

- Treat a greyscale texture as a single-valued height function
- Compute the normal from the partial derivatives in the texture



Normal Mapping

Variation on Bump Mapping:
 Use an RGB texture to directly encode the normal

original mesh 4M triangles

simplified mesh 500 triangles

simplified mesh and normal mapping 500 triangles

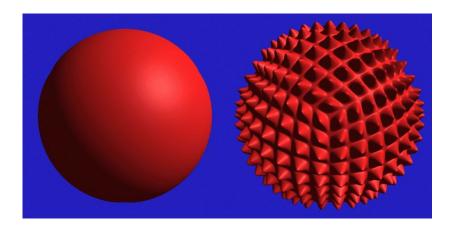
http://en.wikipedia.org/wiki/File:Normal_map_example.png

What's Missing?

- There are no bumps on the silhouette of a bump-mapped or normal-mapped object
- Bump/Normal maps don't allow self-occlusion or self-shadowing

Today

- Finish "Mappings" from Last Time
- Papers for Today
- Texture Mapping
- Common Texture Coordinate Mappings
- Solid Texture
- Procedural Textures
- Perlin Noise
- Procedural Modeling
- L-Systems
- Papers for Friday


From Last Time

- Many "Mapping" techniques
 - Bump Mapping
 - Displacement Mapping
 Parallax Mapping
 - Environment MappingParallax Occlusion
 - Light Mapping
- Normal Mapping

 - Mapping

Displacement Mapping

- Use the texture map to actually move the surface point
- The geometry must be displaced before visibility is determined

Displacement Mapping

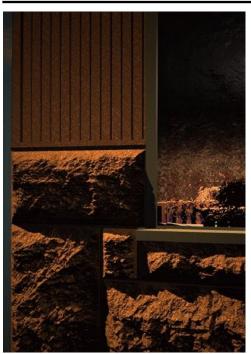
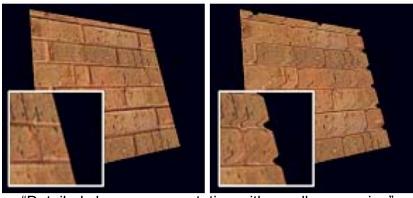


Image from:

Geometry Caching for Ray-Tracing Displacement Maps EGRW 1996 Matt Pharr and Pat Hanrahan

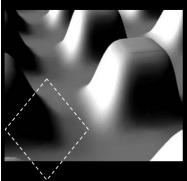
note the detailed shadows cast by the stones


Displacement Mapping

Ken Musgrave

Parallax Mapping a.k.a. Offset Mapping or Virtual Displacement Mapping

- Displace the texture coordinates for each pixel based on view angle and value of the height map at that point
- At steeper view-angles, texture coordinates are displaced more, giving illusion of depth due to parallax effects



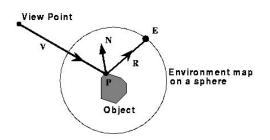
"Detailed shape representation with parallax mapping", Kaneko et al. ICAT 2001

Parallax Occlusion Mapping

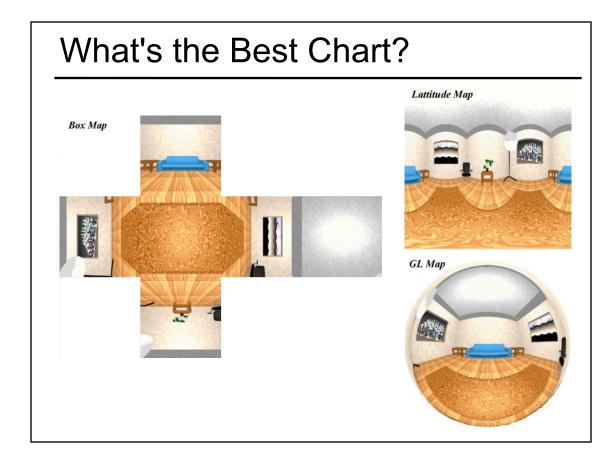
- Brawley & Tatarchuk 2004
- Per pixel ray tracing of the heightfield geometry
- Occlusions & soft shadows

http://developer.amd.com/media/gpu assets/ Tatarchuk-ParallaxOcclusionMapping-Sketch-print.pdf

From Last Time


- Many "Mapping" techniques
 - Bump Mapping
 - Displacement Mapping– Parallax Mapping
 - Environment Mapping
 - Light Mapping
- Normal Mapping

 - Parallax Occlusion Mapping


Environment Maps

 We can simulate reflections by using the direction of the reflected ray to index a spherical texture map at "infinity".

 Assumes that all reflected rays begin from the same point.

Environment Mapping Example

Terminator II

Texture Maps for Illumination

Also called "Light Maps"

Quake

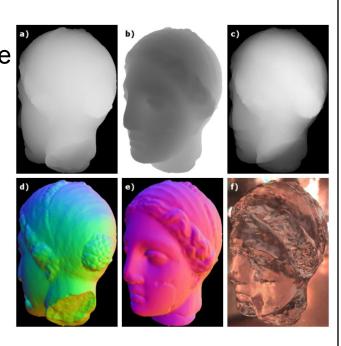
Questions?

Image by Henrik Wann Jensen Environment map by Paul Debevec

Today

- Finish "Mappings" from Last Time
- Papers for Today
- Texture Mapping
- Common Texture Coordinate Mappings
- Solid Texture
- Procedural Textures
- Perlin Noise
- Procedural Modeling
- L-Systems
- Papers for Friday

Reading for Next Time (pick one)


 "An Image Synthesizer", Perlin, SIGGRAPH 1985 & "Improving Noise", Perlin, SIGGRAPH 2002

Reading for Today

Chris Wyman,
 "An Approximate
 Image-Space
 Approach for
 Interactive
 Refraction",
 SIGGRAPH
 2005

Reading for Next Time (pick one)

"Hardware-Accelerated Global Illumination by Image Space Photon Mapping" McGuire & Luebke, HPG 2009

Direct Illumination Only

Direct + Constant Ambient

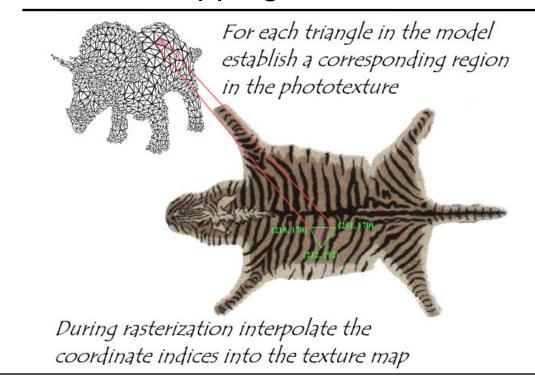
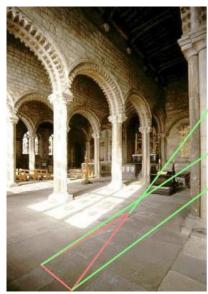

Image Space Photon Mapping

Figure 1: Image-space photon mapping can compute global illumination at interactive rates for scenes with multiple lights, caustics, shadows, and complex BSDFs. This scene renders at 26 Hz at 1920 × 1080. (Indirect and ambient intensity are amplified for comparison in this image.)

Today


- Finish "Mappings" from Last Time
- Papers for Today
- Texture Mapping
- Common Texture Coordinate Mappings
- Solid Texture
- Procedural Textures
- Perlin Noise
- Procedural Modeling
- L-Systems
- Papers for Friday

Texture Mapping

Texture Mapping Difficulties

- Tedious to specify texture coordinates
- Acquiring textures is surprisingly difficult
 - Photographs have projective distortions
 - Variations in reflectance and illumination
 - Tiling problems

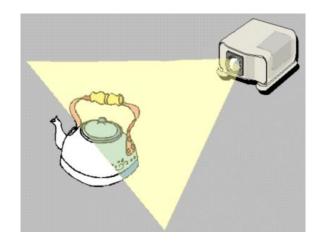
You can get around this problem for planar surfaces if you specify 4 points...

Can't

do this!

Common Texture Coordinate Mappings

- Orthogonal
- Cylindrical
- Spherical
- PerspectiveProjection
- Texture Chart



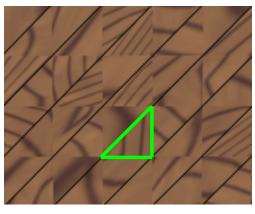
Projective Textures

- Use the texture like a slide projector
- No need to specify texture coordinates explicitly

Projective Texture Example

- Modeling from photographs
- Using input photos as textures

Original photograph with marked edges


Model edges projected onto photograph

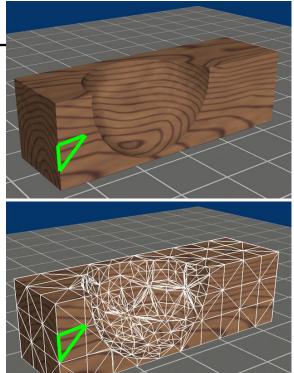
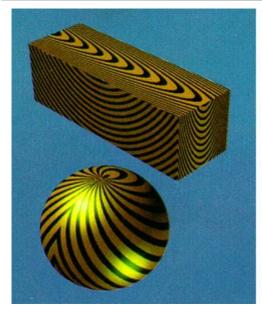
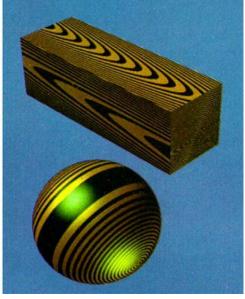

Synthetic rendering

Figure from Debevec, Taylor & Malik http://www.debevec.org/Research

Texture Chart

 Pack triangles into a single image




Questions?

Today

- Finish "Mappings" from Last Time
- Papers for Today
- Texture Mapping
- Common Texture Coordinate Mappings
- Solid Texture
- Procedural Textures
- Perlin Noise
- Procedural Modeling
- L-Systems
- Papers for Friday

Texture Map vs. Solid Texture

"Solid Texturing of Complex Surfaces", Peachey, SIGGRAPH 1985

Procedural Textures

 $f(x,y,z) \rightarrow color$

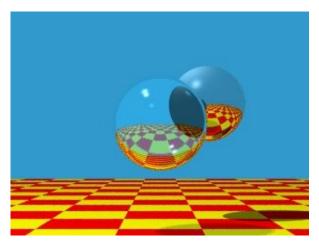
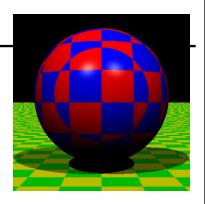
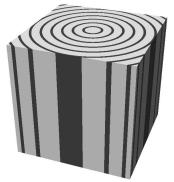
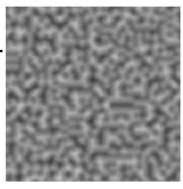




Image by Turner Whitted

Procedural Textures

- Advantages:
 - easy to implement in ray tracer
 - more compact than texture maps (especially for solid textures)
 - infinite resolution
- Disadvantages
 - non-intuitive
 - difficult to match existing texture

Reading for Today


 "An Image Synthesizer", Perlin, SIGGRAPH 1985 & "Improving Noise", Perlin, SIGGRAPH 2002

Perlin Noise

- Properties:
 - Looks "random", but is deterministic (always returns the same answer for a specific coordinate)

- Small memory footprint & fast to compute
- Known amplitude & frequency
- Smooth interpolation when zoomed in
- Can be combined/layered:
 - Add multiple noise functions w/ different frequencies and amplitudes
 - Simple arithmetic operations (thresholding, sine waves, etc.)

"Shade Trees", Cook, SIGGRAPH 1984

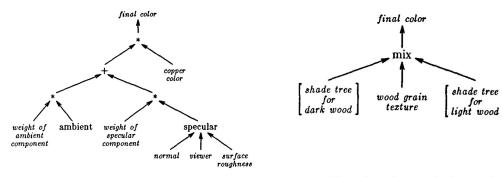
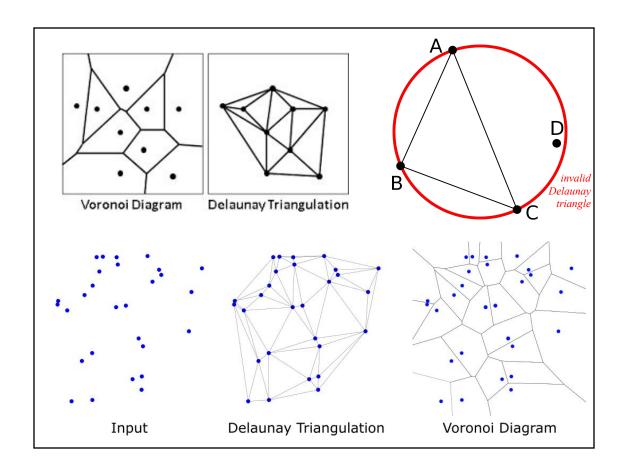


Figure 1a. Shade tree for copper.

Figure 1b. The mix node in a shade tree for wood.



- "Best" triangulation of the red dots (most equilateral)
- A specific triangle
 is in the Delauney
 Triangle if and only if
 the circle defined by
 those 3 points does not
 contain any other red dot
- Note: Well defined when points are ¹ random. If points are on a uniform grid, we have ties...

Black: Voronoi Diagram

- Each cell is the set of all points in the plane that claim that cell's red dot as the closest
- Note: The black edges perpendicularly bisect the grey edges

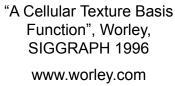
Voronoi Diagram/Cells/Regions

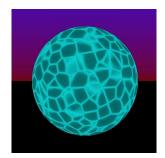
 How to re-district the Netherlands into provinces so that everyone reports to the closest capital

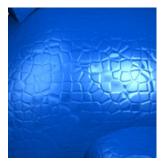
 Cell edges are the perpendicular bisectors of nearby points

• 2D or 3D

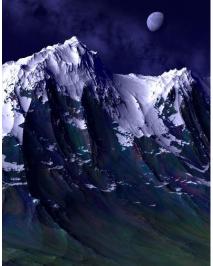
Supports efficient
 Nearest Neighbor queries


http://ccc.inaoep.mx/~rodrigo/robotica/Trigui.pdf


Cellular Textures



Questions?


Image by Justin Legakis

Today

- Finish "Mappings" from Last Time
- Papers for Today
- Texture Mapping
- Common Texture Coordinate Mappings
- Solid Texture
- Procedural Textures
- Perlin Noise
- Procedural Modeling
- L-Systems
- Papers for Friday

Procedural Displacement Mapping

Ken Musgrave www.kenmusgrave.com

L-Systems

alphabet: {a,b} initiator: a production rules:

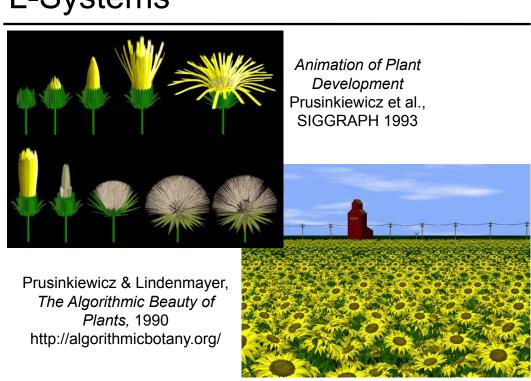
a -> b b -> ba

generations:


a b ba bab babba

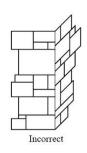
babbabab babbabbabba

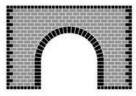
babbababbababababab


d n=7, δ =20° X X \rightarrow F[+X]F[-X]+X F \rightarrow FF

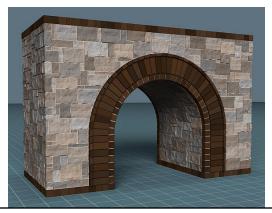
e n=7, δ =25.7° X X \rightarrow F[+X][-X]FX F \rightarrow FF

Prusinkiewicz & Lindenmayer,
The Algorithmic Beauty of Plants, 1990
http://algorithmicbotany.org/

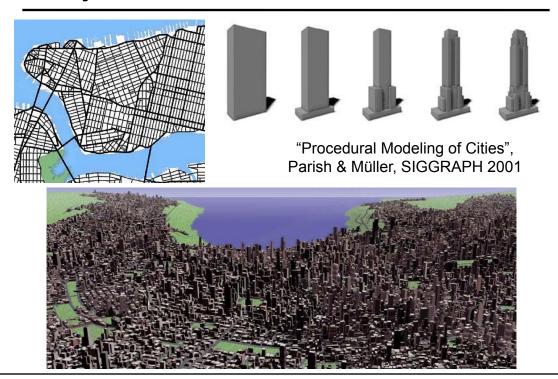

L-Systems

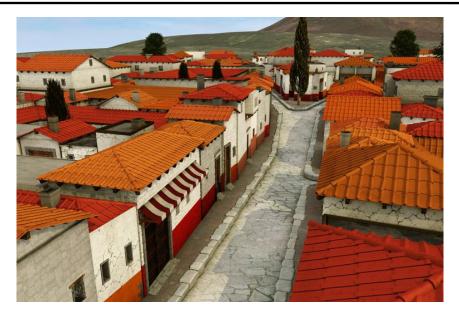


Cellular Texturing for Architecture



"Feature-Based Cellular Texturing for Architectural Models", Legakis, Dorsey, & Gortler, SIGGRAPH 2001




Procedural Modeling Advantages

- Small representation
- Generate detail as needed ("infinite"? resolution)
- Great for natural mathematical patterns and man-made engineering and design
- Trivial to make many duplicate objects with small variations

L-Systems for Cities

Procedural Modeling of Buildings

 "Procedural Modeling of Buildings", Mueller, Wonka, Haegler, Ulmer & Van Gool, SIGGRAPH 2006

Applications

- Entertainment Gaming
- Education Studying botanical variation
- Archeological reconstruction
- Realism for Training
- Predicting the future (how will things grow over time)
- Urban planning (preparing for traffic)
- Accommodate for that growth/change

Image-based Procedural Modeling of Facades

Mueller, Zeng,
 Wonka, & Van Goo
 SIGGRAPH 2007

Floor	Tile	Tile	Tile		Д	
Floor	Tile	Tile	Tile	•••		
Floor	Tile	Tile	Tile			

Input Photograph

Reconstructed 3D Geometry

Questions about Procedural Modeling

- Number of rules necessary?
- Cost in human designer time of creating procedural model?
- Re-useability of procedural model?
- Validation
- Can you build a procedural model that produces a specific target?
 - From a photo of a specific rare wood grain, can you create a procedural model that creates texture that looks like it came from a different location of the same/similar tree?

Questions?

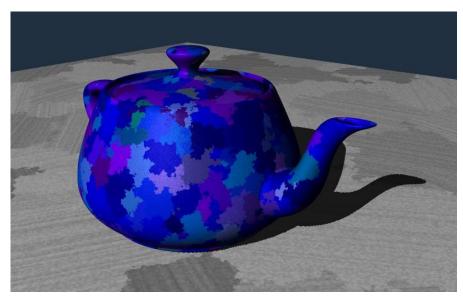


Image by Justin Legakis

Today

- Finish "Mappings" from Last Time
- Papers for Today
- Texture Mapping
- Common Texture Coordinate Mappings
- Solid Texture
- Procedural Textures
- Perlin Noise
- Procedural Modeling
- L-Systems
- Papers for Friday