Texture Synthesis

Carlton Draught: Big Ad, 2006

Uses Weta Digital's MASSIVE - first significant use in Lord of the Rings movies

<section-header>

- Papers for Today
- Texture Tiling
- Texture Synthesis Challenge
- Markov Model
- Constrained Texture Synthesis
- Image Completion
- Wang Tiles for Texture Synthesis
- Volumetric Texture Synthesis
- Papers for Friday

Painterly Rendering

Painterly rendering with curved brush strokes of multiple sizes Hertzmann SIGGRAPH 1998

Figure 3: *Making a drawing*. With the drawing page folded in half, the artist makes a free-hand drawing while referring to the prompt page (left). The completed drawing page (right) contains a free-hand drawing and a registered drawing.

Cole, Golovinskiy, Limpaecher, Stoddart Barros, Finkelstein, Funkhouser, & Rusinkiewicz, SIGGRAPH 2008

Types of Edges in Line Drawings

- Silhouettes/Contours: where normal is perpendicular to the view direction
- Suggestive Contour: inflection points of the surface normal
- Ridges & Valleys: extremum of curvature
- Apparent Ridges: based on view dependent curvature

- Papers for Today
- Texture Tiling
- Texture Synthesis Challenge
- Markov Model
- Constrained Texture Synthesis
- Image Completion
- Wang Tiles for Texture Synthesis
- Volumetric Texture Synthesis
- Papers for Friday

"Pyramid-Based Texture Analysis/Synthesis", Heeger & Bergen, SIGGRAPH 1995

- Motivated by human texture perception
- Focused on stochastic textures (as opposed to deterministic/periodic textures)

"Pyramid-Based Texture Analysis/Synthesis", Heeger & Bergen, SIGGRAPH 1995

- Focuses on matching the input histogram at different resolutions (frequencies)
- Failure example: *but is this really a "texture"?*

- Papers for Today
- Texture Tiling
- Texture Synthesis Challenge
- Markov Model
- Constrained Texture Synthesis
- Image Completion
- Wang Tiles for Texture Synthesis
- Volumetric Texture Synthesis
- Papers for Friday

Markov Random Field

• English words and sentences can be modeled as a Markov Random Field:

"I spent an interesting evening recently with a grain of salt."

Questions?

- Papers for Today
- Texture Tiling
- Texture Synthesis Challenge
- Markov Model
- Constrained Texture Synthesis
- Image Completion
- Wang Tiles for Texture Synthesis
- Volumetric Texture Synthesis
- Papers for Friday

Constrained Texture Synthesis

Examples from Efros & Leung http://graphics.cs.cmu.edu/people/efros/research/EfrosLeung.html

Image Inpainting

"Fragment-based image completion", Drori, Cohen-Or, Yeshurun, SIGGRAPH 2003

- Coarse to fine completion
- Confidence & traversal order
- Search for best match over different scales, rotations, & resolutions (texture frequency)
- Compositing fragments

"Image Quilting for Texture Synthesis and Transfer", Efros & Freeman, SIGGRAPH 2001

"PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing", Barnes, Shechtman, Finkelstein, & Goldman, SIGGRAPH 2009

- Papers for Today
- Texture Tiling
- Texture Synthesis Challenge
- Markov Model
- Constrained Texture Synthesis
- Image Completion
- Wang Tiles for Texture Synthesis
- Volumetric Texture Synthesis
- Papers for Friday

Wang Tile Texture Synthesis As a precomputation, fill the tiles with texture Then create infinite amounts of non-periodic texture! Inverse Inverse Automatically generated set of Wang tiles Synthesized textures Wang Tiles for Image and Texture Generation", Cohen, Shade, Hiller, Deussen, SIGGRAPH 2003

- Papers for Today
- Texture Tiling
- Texture Synthesis Challenge
- Markov Model
- Constrained Texture Synthesis
- Image Completion
- Wang Tiles for Texture Synthesis
- Volumetric Texture Synthesis
- Papers for Friday

Recovering Sphere Distributions

- N_A = Profile density (number of circles per unit area)
- N_{V} = Particle density (number of spheres per unit volume)
- \overline{H} = Mean caliper particle diameter

The fundamental relationship of stereology:

$$N_A = \overline{H}N_V$$

Slide from Rob Jagnow

Recovering Color

Select mean particle colors from segmented regions in the input image

Input

Mean Colors

Putting It All Together

Input

Synthetic volume without noise

Synthetic volume with noise

Slide from Rob Jagnow

- Papers for Today
- Texture Tiling
- Texture Synthesis Challenge
- Markov Model
- Constrained Texture Synthesis
- Image Completion
- Wang Tiles for Texture Synthesis
- Volumetric Texture Synthesis
- Papers for Friday

"Flocks, Herds, and Schools: A Distributed Behavioral Model", Craig W. Reynolds, SIGGRAPH 1987

"On Demand Solid Texture Synthesis Using Deep 3D Networks", Gutierrez, Rabin, Galerne, and Hurtut, 2019

Figure 8: Illustration of a solid texture whose cross sections cannot comply with the example along three directions. Given a 2D

"Interactive Digital Photomontage", Agarwala, Dontcheva, Agrawala, Drucker, Colburn, Curless, Salesin, & Cohen SIGGRAPH 2004

