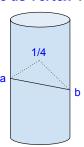
Subdivision Surfaces

https://imgur.com/gallery/1jwOQms

Geri's Game


Pixar Animation Studios, 1986



Questions on Homework 1?

What's an illegal edge collapse?

What if vertex 1 is the same as vertex 4?

• To be legal, the ring of neighboring vertices must be unique (have no duplicates)!

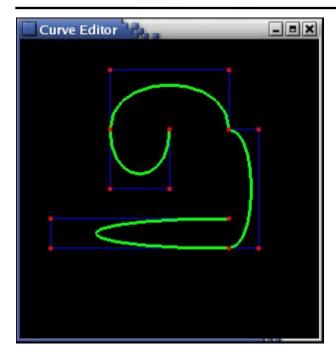
Notes about HW Autograding

- HW is run on a Linux desktop machine
- Automated:
 - Keyboard & mouse commands
 - Reasonable pauses (sleep)
 - Screenshots
- Will have longer wait times
 - not parallelized (one student at a time)
 - ... eventually it will be running on two desktops

Don't panic if autograding takes a while or gets stuck.

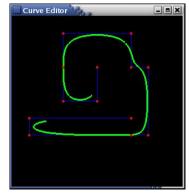
Post on the forum if you experience problems.

Curves & Surfaces Continuity Definitions C⁰, G¹, C¹, ... C[∞] Interpolation vs. Approximation Splines Cubic Bezier & BSpline

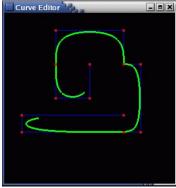

- Worksheet: Bezier Spline vs. BSpline
- Papers for Today
 - "Subdivision Surfaces in Character Animation"
 - "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time

Pop Worksheet!

What is the minimum number of cubic Bezier curve segments needed to approximately reproduce the two cui vei

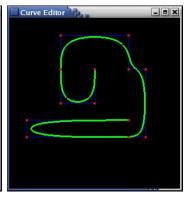

Repeat for cubic BSplines curve segments.

Connecting Cubic Bézier Curves



- Where is this curve
 - C⁰ continuous?
 - G¹ continuous?
 - C¹ continuous?
- What's the relationship between:
 - the # of control points, and
 - the # of cubic Bézier subcurves?

BSpline Curve Control Points



Default BSpline

BSpline with Discontinuity

Repeat interior control point

BSpline which passes through end points

Repeat end points

- Worksheet: Bezier Spline vs. BSpline
- Papers for Today
 - "Subdivision Surfaces in Character Animation"
 - "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time

Reading for Today

Quad Meshes more common in artistic practice (e.g. Pixar's Geri's Game)

 DeRose, Kass, & Truong, "Subdivision Surfaces in Character Animation", SIGGRAPH 1998

Figure 5: Geri's hand as a piecewise smooth Catmull-Clark surface. Infinitely sharp creases are used between the skin and the finger nails.

Subdivision Surfaces in Character Animation

- Catmull Clark Subdivision Rules
- Semi-sharp vs. Infinitely-sharp creases
- Mass-Spring Cloth (next week)
- Hierarchical Mesh for Collision
- Texturing Subdivision Surfaces

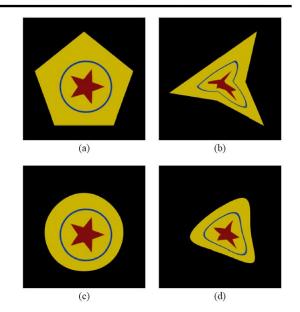
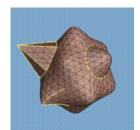
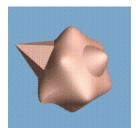
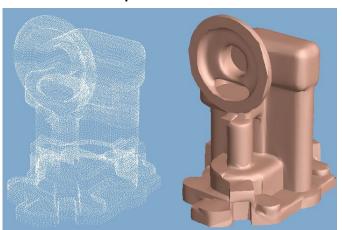


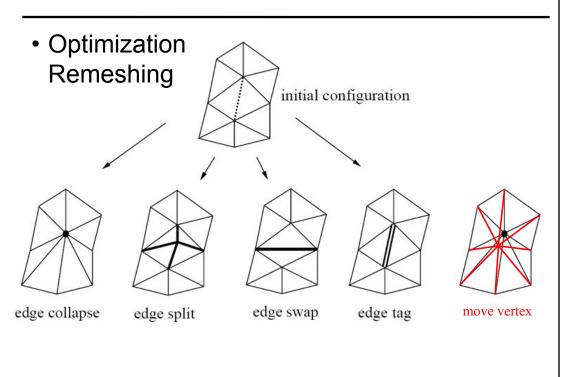

Figure 11: (a) A texture mapped regular pentagon comprised of 5 triangles; (b) the pentagonal model with its vertices moved; (c) A subdivision surface whose control mesh is the same 5 triangles in (a), and where boundary edges are marked as creases; (d) the subdivision surface with its vertices positioned as in (b).


Reading for Today


Triangle meshes directly applies to HW1!

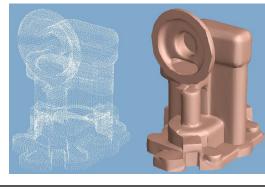
 Hoppe et al., "Piecewise Smooth Surface Reconstruction" SIGGRAPH 1994

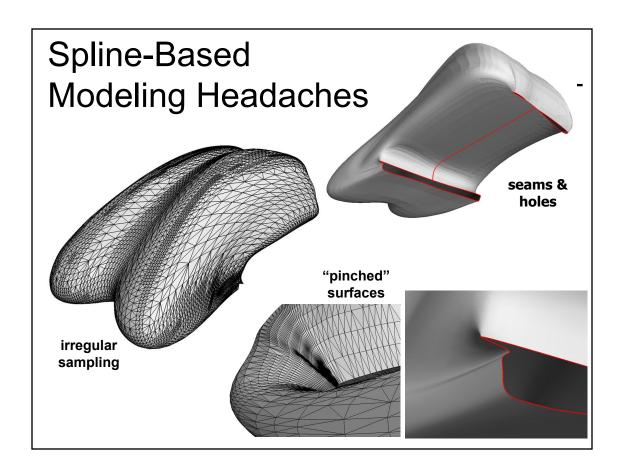




Piecewise Smooth Surface Reconstruction

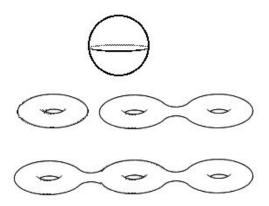
- From input: scanned mesh points
 - Estimate topological type (genus)
 - Mesh optimization (a.k.a. simplification)
 - Smooth surface optimization




Piecewise Smooth Surface Reconstruction

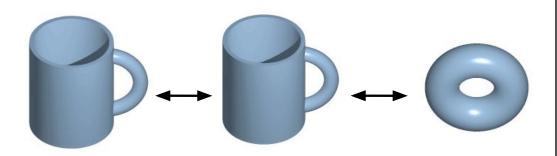
Piecewise Smooth Surface Reconstruction

- Crease subdivision masks decouple behavior of surface on either side of crease
- Crease rules cannot model a cone
- Optimization can be done locally
 - subdivision control points have only local influence
- Results
 - Noise?
 - Applicability?
 - Limitations?
 - Running Time

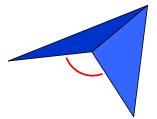


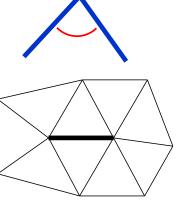
- Worksheet: Bezier Spline vs. BSpline
- Papers for Today
 - "Subdivision Surfaces in Character Animation"
 - "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time

Misc. Mesh/Surface Vocabulary


 Genus: The maximum number of disjoint simple closed curves which can be cut from an orientable surface of genus g without disconnecting it is g.

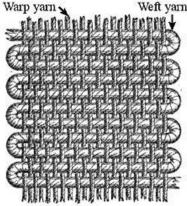
Misc. Mesh/Surface Vocabulary


 Homeomorphic/Topological equivalence: a continuous stretching and bending of the object into a new shape


http://en.wikipedia.org/wiki/Image:Mug_and_Torus_morph.gif

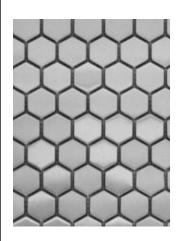
Misc. Mesh/Surface Vocabulary

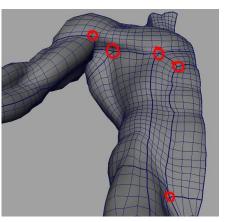
- Dihedral Angle:
 - the angle between the planes of two triangular faces
 - "looking down the edge" between two faces, the angle between the faces.



 Valence (a.k.a. degree): the number of edges incident to the vertex.

Misc. Mesh/Surface Vocabulary

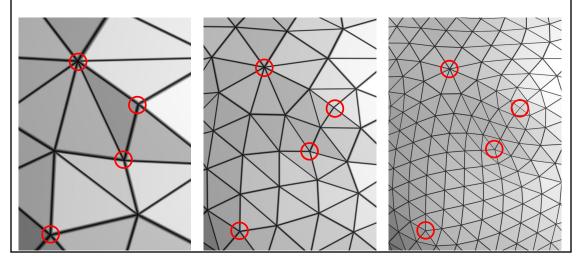

• Warp & weft: Yarns used in weaving. Because the weft does not have to be stretched in the way that the warp is, it can generally be less strong.



http://en.wikipedia.org/wiki/Weft

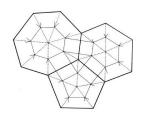
Misc. Mesh/Surface Vocabulary

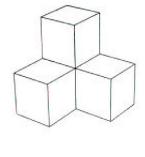
- Extraordinary Vertex
 - Quad mesh: vertices w/ valence ≠ 4
 - Hex mesh: vertices w/ valence ≠ 3
 - Tri mesh: vertices w/ valence ≠ 6



Misc. Mesh/Surface Vocabulary

- Extraordinary Vertex
 - Quad mesh: vertices w/ valence ≠ 4
 - Hex mesh: vertices w/ valence ≠ 3
 - Tri mesh: vertices w/ valence ≠ 6

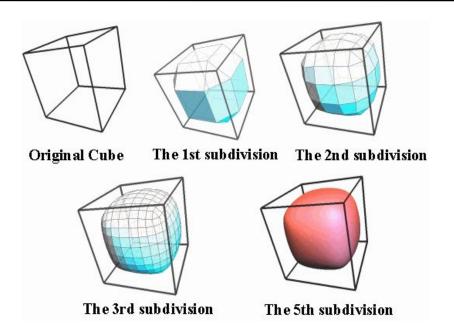

Today

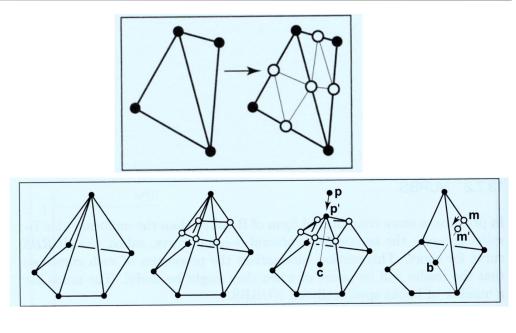

- Worksheet: Bezier Spline vs. BSpline
- Papers for Today
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
 - Doo Sabin (anything!)
 - Loop, Butterfly, $\sqrt{3}$ (triangles only)
 - Catmull Clark (turns everything into quads)
 - ... many others!
- Interpolating Subdivision
- Papers for Next Time


Chaikin's Algorithm

Doo-Sabin Subdivision

Idea: introduce a new vertex for each face At the midpoint of old vertex, face centroid





Doo-Sabin Subdivision

http://www.ke.ics.saitama-u.ac.jp/xuz/pic/doo-sabin.gif

Loop Subdivision

Shirley, Fundamentals of Computer Graphics

Loop Subdivision

Subdivision Rules. The masks for the Loop scheme are shown in Figure 4.3. For boundaries and edges tagged as *crease* edges, special rules are used. These rules produce a cubic spline curve along the boundary/crease. The curve only depends on control points on the boundary/crease.

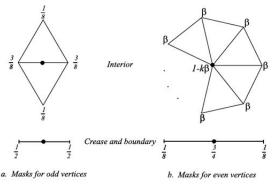
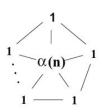
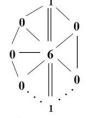
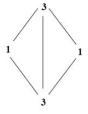



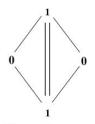
Figure 4.3: Loop subdivision: in the picture above, β can be chosen to be either $\frac{1}{n}(5/8-(\frac{3}{8}+\frac{1}{4}\cos\frac{2\pi}{n})^2)$ (original choice of Loop [16]), or, for n>3, $\beta=\frac{3}{8n}$ as proposed by Warren [33]. For n=3, $\beta=3/16$ can be used.

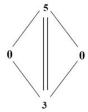

SIGGRAPH 2000 course notes Subdivision for Modeling and Animation (page 70)

Adding creases to Loop Subdivision

- Vertex & edge masks
- Limit masks 1
 - Position
 - Tangent


smooth or dart vertex


regular or non-regular crease vertex


corner vertex

(1) smooth edge

(2) regular crease edge

(3) non-regular crease edge

Catmull Clark Subdivision

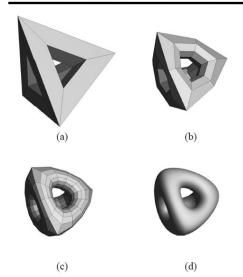


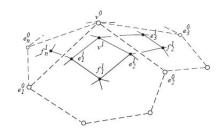
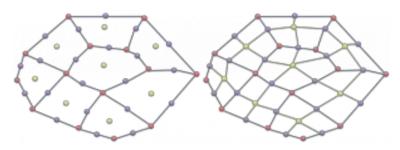
Figure 3: Recursive subdivision of a topologically complicated mesh: (a) the control mesh; (b) after one subdivision step; (c) after two subdivision steps; (d) the limit surface.

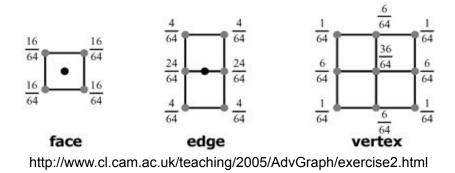
$$e_j^{i+1} = \frac{v^i + e_j^i + f_{j-1}^{i+1} + f_j^{i+1}}{4},\tag{1}$$

where subscripts are taken modulo the valence of the central vertex v^0 . (The valence of a vertex is the number of edges incident to it.) Finally, a vertex point v^1 is computed as

$$v^{j+1} = \frac{n-2}{n}v^j + \frac{1}{n^2}\sum_j e^i_j + \frac{1}{n^2}\sum_j f^{j+1}_j \tag{2}$$

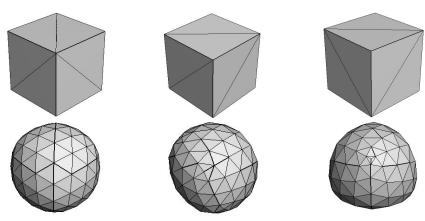
Vertices of valence 4 are called ordinary; others are called extraordinary.

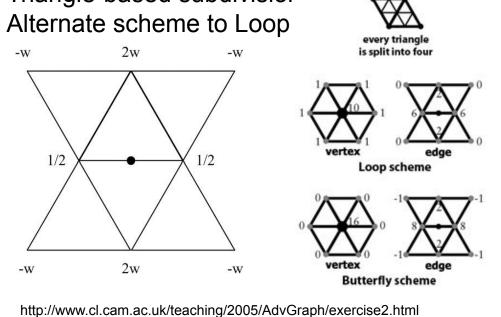

Figure 4: The situation around a vertex v^0 of valence n.

"Subdivision Surfaces in Character Animation", DeRose, Kass & Truong, SIGGRAPH 1998

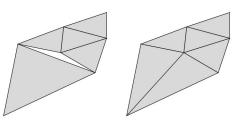
Catmull-Clark Subdivision



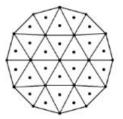
https://team.inria.fr/virtualplants/teaching/informatique-graphique-2016/tp4-instructions/

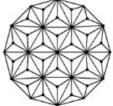

Catmull-Clark preferred by Artists

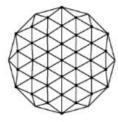
- Catmull-Clark is based on quadrilaterals
 - Like NURBS, specifically cubic bsplines
 - Implicit adjacency in subdivided microgeometry
 - Better than triangles for symmetric objects

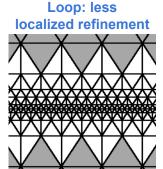


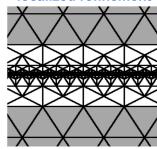
Butterfly Subdivision

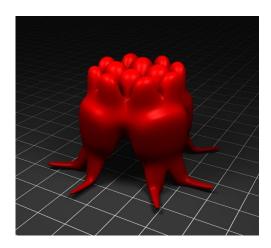

- Triangle-based subdivisior

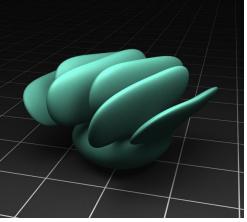

√3 Subdivision Kobbelt, SIGGRAPH 2000


Adaptive Subdivision (Loop): Need to close gaps between different levels of refinement


the split operation places a midvertex at the centre of each triangle

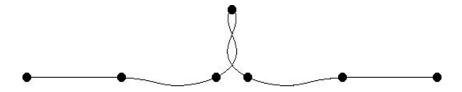

joining the midvertex to the vertices of the triangle realises the 1-to-3 split


after smoothing each old vertex, edges are flipped to connect pairs of midvertices

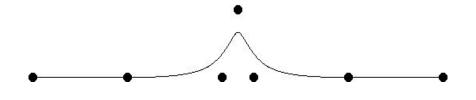


√3: more localized refinement

Questions?



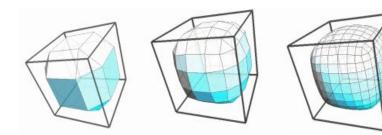
Justin Legakis

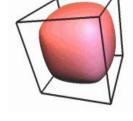

- Worksheet: Bezier Spline vs. BSpline
- Papers for Today
 - "Subdivision Surfaces in Character Animation"
 - "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time

Interpolation vs. Approximation Curves

 Interpolation Curve – over constrained → lots of (undesirable?) oscillations

Approximation Curve – more reasonable?




Interpolating Subdivision

· Chaikin:

Doo-Sabin:

of the centroids of each edge/face

Interpolating Subdivision

- Interpolation vs.
 Approximation of control points
- Handle arbitrary topological type
- Reduce the "extraneous bumps & wiggles"

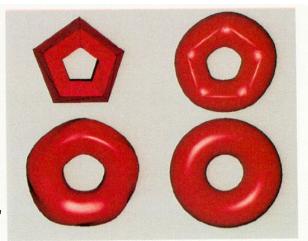
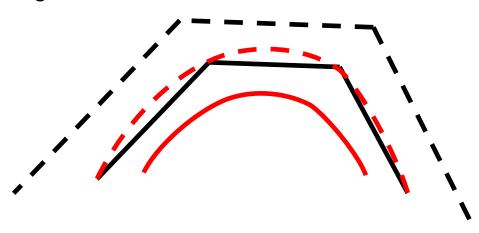
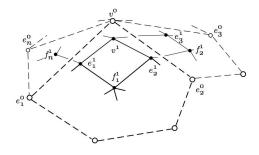



Figure 4: Interpolating a coarsely polygonized torus. Upper left: original mesh. Upper right: Shirman-Séquin interpolation[14]. Lower left: Interpolating Catmull-Clark surface. Lower right: Faired interpolating Catmull-Clark surface.

"Efficient, fair interpolation using Catmull-Clark surfaces", Halstead, Kass & DeRose, SIGGRAPH 1993

Interpolation of Catmull-Clark Surfaces

 Solve for a new control mesh (generally "bigger") such that when Catmull-Clark subdivision is applied it interpolates the original control mesh



Vertex Position in Limit

• V_n stores the center vertex & surrounding edge & face vertices as a big column vector

$$V_n^{i+1} = \mathbf{S}_n V_n^i$$

$$V_n^{\infty} := \lim_{i \to \infty} \mathbf{S}_n^i V_n^1$$

• When n = 4:
$$(\mathsf{n} = \mathsf{valence}) \qquad \mathbf{S}_4 = \frac{1}{16} * \begin{pmatrix} 9 & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 6 & 6 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 6 & 1 & 6 & 1 & 0 & 1 & 1 & 0 & 0 \\ 6 & 0 & 1 & 6 & 1 & 0 & 1 & 1 & 0 \\ 6 & 1 & 0 & 1 & 6 & 0 & 0 & 1 & 1 \\ 4 & 4 & 4 & 0 & 0 & 4 & 0 & 0 & 0 \\ 4 & 0 & 4 & 4 & 0 & 0 & 4 & 0 & 0 \\ 4 & 0 & 0 & 4 & 4 & 0 & 0 & 4 & 0 \\ 4 & 0 & 0 & 4 & 4 & 0 & 0 & 4 & 0 \\ 4 & 0 & 0 & 4 & 4 & 0 & 0 & 0 & 4 \end{pmatrix}$$

Solve for New Positions

- Goal: Find the control mesh vertex positions,
 x (a column vector of 3D points), such that the position of the vertices in the limit match the input vertices, b (also a column vector of points)
- Use Least Squares to solve

$$\mathbf{A}x = b$$

where A is a square matrix with the interpolation rules and connectivity of the mesh

See paper for extension to match limit normals

Fairing

- Fairing: an additional part or structure added to an aircraft, tractor-trailer, etc. to smooth the outline and thus reduce drag
- Subdivide initial resolution twice so that all constrained vertex positions are independent

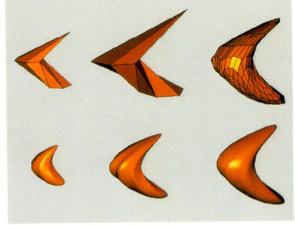
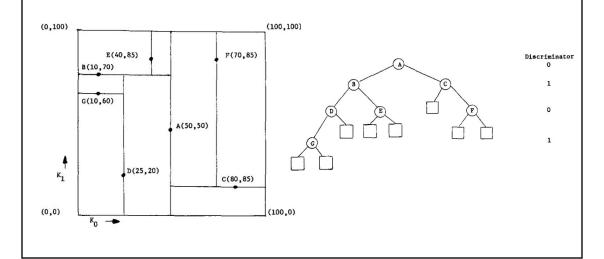
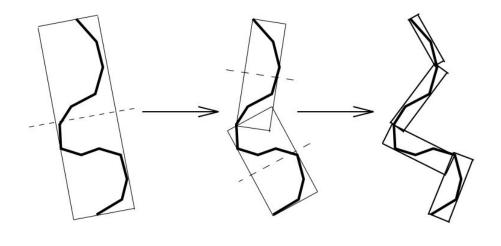
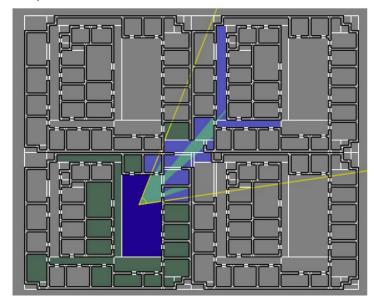



Figure 5: Top row: Original mesh, Interpolating mesh, Faired interpolating mesh. Bottom row: Corresponding Catmull-Clark surfaces. Interpolation introduces wiggles which are removed by fairing.

- Worksheet: Bezier Spline vs. BSpline
- Papers for Today
 - "Subdivision Surfaces in Character Animation"
 - "Piecewise Smooth Surface Reconstruction"
- Misc. Mesh/Surface Vocabulary
- Subdivision Surface "Zoo"
- Interpolating Subdivision
- Papers for Next Time


Reading for Next Time: (pick one)

"Multidimensional Binary Search Trees Used for Associative Searching", Bentley, Communications of the ACM, 1975


Reading for Next Time: (pick one)

"OBB-Tree: A Hierarchical Structure for Rapid Interference Detection", Gottschalk, Lin, & Manocha, SIGGRAPH 1996.

Reading for Next Time: (pick one)

"Visibility Preprocessing For Interactive Walkthroughs", Teller & Sequin, SIGGRAPH 1991.

