

- Readings for Today
- How do we Animate?
 - Keyframing
 - Procedural Animation
 - Physically-Based Animation
 - Motion Capture
 - Skeletal Animation
 - Forward and Inverse Kinematics
- Research Paper: Simple Artist Sketch + Motion Capture + Inverse Kinematics
- Figure Skating Lesson
- Readings for Next Time

Figure 6: Keyframes used in the articulated character walk example. The artist only specifies keyframes for a subset of handles (handles at hands and feet) which are shown as blue dots. Nine keyframes are used to create a walking cycle. Their timing is visualized by the black lines at the bottom. The artworks are adapted from Angryanimator.com (http://www.angryanimator.com/)

Today: How do we Animate?

- Readings for Today
- How do we Animate?
 - Keyframing
 - Procedural Animation
 - Physically-Based Animation
 - Motion Capture
 - Skeletal Animation
 - Forward and Inverse Kinematics
- Research Paper: Simple Artist Sketch + Motion Capture + Inverse Kinematics
- Figure Skating Lesson
- Readings for Next Time

Keyframing

- · Use spline curves to automate the in betweening
 - Good control
 - Less tedious than drawing every frame
- Creating a good animation still requires considerable skill and talent and learning from observing the real world

<text><list-item><list-item><list-item>

Today: How do we Animate?

- Readings for Today
- How do we Animate?
 - Keyframing
 - Procedural Animation
 - Physically-Based Animation
 - Motion Capture
 - Skeletal Animation
 - Forward and Inverse Kinematics
- Research Paper: Simple Artist Sketch + Motion Capture + Inverse Kinematics
- Figure Skating Lesson
- Readings for Next Time

Physically-Based Animation

- Assign physical properties to objects (masses, forces, inertial properties)
- Simulate physics by solving equations
- Realistic, but difficult to control
- Used for *secondary motions* (hair, cloth, scattering, splashes, breaking, smoke, etc.) that respond to primary *user controlled* animation

"Interactive Manipulation of Rigid Body Simulations" SIGGRAPH 2000, Popović, Seitz, Erdmann, Popović & Witkin "Sampling Plausible Solutions to Multi-body Constraint Problems" Chenney & Forsyth, SIGGRAPH 2000

- Readings for Today
- How do we Animate?
 - Keyframing
 - Procedural Animation
 - Physically-Based Animation
 - Motion Capture
 - Skeletal Animation
 - Forward and Inverse Kinematics
- Research Paper: Simple Artist Sketch + Motion Capture + Inverse Kinematics
- Figure Skating Lesson
- Readings for Next Time

Motion Capture

- Optical markers, high-speed cameras, triangulation → 3D position
- Captures style, subtle nuances and realism at high-resolution

- You must observe someone do something
- Difficult (or impossible?) to edit mo-cap data

- Readings for Today
- How do we Animate?
 - Keyframing
 - Procedural Animation
 - Physically-Based Animation
 - Motion Capture
 - Skeletal Animation
 - Forward and Inverse Kinematics
- Research Paper: Simple Artist Sketch + Motion Capture + Inverse Kinematics
- Figure Skating Lesson
- Readings for Next Time

Articulated Models

- Articulated models:
 - rigid parts
 - connected by joints
- They can be animated by specifying the joint angles as functions of time.

Skeletal Animation Challenges

- Skinning
 - Complex deformable skin, muscle, skin motion
- Hierarchical controls
 - Smile control, eye blinking, etc.
 - Keyframes for these higher-level controls
- A huge amount of time is spent building the 3D models, its skeleton, and its controls

Searching Configuration Space

"The good-looking textured light-sourced bouncy fun smart and stretchy page" Hugo Elias, http://freespace.virgin.net/hugo.elias/models/m_ik2.htm

IK Challenge

- Find a "natural" skeleton configuration for a given collection of pose constraints
- A vector constraint function C(p) = 0 collects all pose constraints
- A scalar objective function g(p) measures the quality of a pose, g(p) is minimum for most natural poses.

Example g(p):

- deviation from natural pose
- joint stiffness Force: Newton (N) = $kg * m / s^2$
- power consumption Work: Joule (J) = $N^*m = kg^*m^2/s^2$ Power: Watt (W) = J/s = kg^*m^2/s^3

Questions?

Figure 8: Spacetime constraints: a cartoonist's view. (c) 1988 by Laura Green, used by permission.

"Spacetime Constraints", Witkin & Kass, SIGGRAPH 1988

Today: How do we Animate? Readings for Today How do we Animate? Keyframing Procedural Animation Physically-Based Animation Motion Capture Skeletal Animation Forward and Inverse Kinematics Research Paper: Simple Artist Sketch + Motion Capture + Inverse Kinematics Figure Skating Lesson Readings for Next Time

What's a Natural Pose?

- Training database of ~50 "natural poses"
- For each, compute center of mass of:
 - Upper body
 - Arms
 - Lower body
- The relative COM of each generated pose is matched to most the most similar database example

 P_s

Liu & Popović

Linear and Angular Momentum

- In unconstrained animation (no contacts), both linear & angular momentum should be conserved
- The center of mass should follow a parabolic trajectory according to gravity
- The joints should move such that the angular momentum of the whole body remains constant

System Features

- · Automatically detect point/line/plane constraints
- Divide animation into constrained portions (e.g., feet in contact with ground) and unconstrained portions (e.g., free flight)
- Linear and angular momentum constraints without having to compute muscle forces

- Mass displacement
- Velocity of the degrees of freedom (DOF)

 "Unbalance" (distance the COM is outside of ground constraints)

Coach Mary Figure Skating

Figure Skating Motion Capture, Richards Biomechanics Lab, University of Delaware, 2017

http://www.cc.gatech.edu/~jtan34/project/articulatedSwimmingCreatures.html

"Flexible Muscle-Based Locomotion for Bipedal Creatures", Geijtenbeek, van de Panne, van der Stappen, SIGGRAPH Asia 2013

Figure 1: Physics-based simulation of locomotion for a variety of creatures driven by 3D muscle-based control. The synthesized controllers can locomote in real time at a range of speeds, be steered to a target heading, and can traverse variable terrain.

- Readings for Today
- How do we Animate?
 - Keyframing
 - Procedural Animation
 - Physically-Based Animation
 - Motion Capture
 - Skeletal Animation
 - Forward and Inverse Kinematics
- Research Paper: Simple Artist Sketch + Motion Capture + Inverse Kinematics
- Figure Skating Lesson
- Readings for Next Time

Reading for Tuesday

 "An improved illumination model for shaded display" Turner Whitted, 1980.

