The Rendering Equation
& Irradiance Caching
& Photon Mapping

The Light of Mies van der Rohe

Henrik Wann Jensen, SIGGRAPH 2000
Today

- Worksheet on Progressive Radiosity
- The Rendering Equation
- Ray Casting vs. Ray Tracing vs. Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Papers for Today
- Ray Grammar
- Papers for Next Time
Pop Worksheet!

Is this Traditional Ray Tracing?

No. Refraction and complex reflections for illumination are not handled properly in traditional (backward) ray tracing.
Refraction and the Lifeguard Problem

- Running is faster than swimming

Today

- Worksheet on Progressive Radiosity
- The Rendering Equation
- Ray Casting vs. Ray Tracing vs. Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Papers for Today
- Ray Grammar
- Papers for Next Time
The Rendering Equation

- Clean mathematical framework for light-transport simulation
- At each point, outgoing light in one direction is the integral of incoming light in all directions multiplied by reflectance property

“The Rendering Equation”, Kajiya, SIGGRAPH 1986
The Rendering Equation

\[L(x',\omega') = E(x',\omega') + \int \rho_{x}(\omega,\omega')L(x,\omega)G(x,x')V(x,x') \, dA \]

L(x',\omega') is the radiance from a point on a surface in a given direction \(\omega' \)

The Rendering Equation

\[L(x',\omega') = E(x',\omega') + \int \rho_{x}(\omega,\omega')L(x,\omega)G(x,x')V(x,x') \, dA \]

E(x',\omega') is the emitted radiance from a point: \(E \) is non-zero only if \(x' \) is emissive (a light source)
The Rendering Equation

For each x, compute $L(x, \omega)$, the radiance at point x in the direction ω (from x to x')

$L(x', \omega') = E(x', \omega') + \int \rho_x(\omega, \omega') L(x, \omega) G(x, x') V(x, x') \, dA$

Sum the contribution from all of the other surfaces in the scene
The Rendering Equation

\[L(x', \omega') = E(x', \omega') + \int \rho_x(\omega, \omega') L(x, \omega') G(x, x') V(x, x') \, dA \]

scale the contribution by \(\rho_x(\omega, \omega') \), the reflectivity (BRDF) of the surface at \(x' \)

For each \(x \), compute \(V(x, x') \), the visibility between \(x \) and \(x' \):
1 when the surfaces are unobstructed along the direction \(\omega \), 0 otherwise
The Rendering Equation

For each x, compute $G(x,x')$, which describes the geometric relationship between the two surfaces at x and x'

$L(x',\omega') = E(x',\omega') + \int \rho_x(\omega,\omega')L(x,\omega)G(x,x')V(x,x') \, dA$

For each x, compute $G(x, x')$, which describes the geometric relationship between the two surfaces at x and x'

Intuition about $G(x, x')$?

- Which arrangement of two surfaces will yield the greatest transfer of light energy? Why?
Rendering Equation → Radiosity

\[L(x', \omega') = E(x', \omega') + \int \rho_{x'}(\omega, \omega')L(x, \omega)G(x, x')V(x, x') \, dA \]

Radiosity assumption: perfectly diffuse surfaces (not directional)

\[B_{x'} = E_{x'} + \rho_{x'} \int B_{x} G(x, x')V(x, x') \]

discretize

\[B_i = E_i + \rho_i \sum_{j=1}^{n} F_{ij} B_j \]

Questions?

1 glossy sample per pixel

256 glossy samples per pixel
Today

- Worksheet on Progressive Radiosity
- The Rendering Equation
- Ray Casting vs. Ray Tracing vs. Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Papers for Today
- Ray Grammar
- Papers for Next Time

Ray Casting

- Cast a ray from the eye through each pixel
Ray Tracing

- Cast a ray from the eye through each pixel
- Trace secondary rays (light, reflection, refraction)
 But only reflect off shiny or glossy materials...

Monte Carlo Ray Tracing

- Cast a ray from the eye through each pixel
- Cast random rays to accumulate radiance contribution
 - Recurse to solve the Rendering Equation

Sample the full hemisphere of incoming light for every surface (diffuse materials too!)

Note: Always sample the primary light
(Monte Carlo) Path Tracing

- Trace only one secondary ray per recursion
- But send many primary rays per pixel
 (performs antialiasing as well)

Ray Tracing vs. Path Tracing

2 bounces
5 glossy samples
5 shadow samples

How many rays cast per pixel?
1 main ray + 5 shadow rays +
5 glossy rays + 5x5 shadow rays +
5*5 glossy rays + 5x5x5 shadow rays
= 186 rays

How many 3 bounce paths can we trace per pixel for the same cost?

186 rays / 8 ray casts per path
= ~23 paths

Which will probably have less error?
Questions?

10 paths/pixel

100 paths/pixel

Images from Henrik Wann Jensen

Today

• Worksheet on Progressive Radiosity
• The Rendering Equation
• Ray Casting vs. Ray Tracing vs. Monte-Carlo Ray Tracing vs. Path Tracing
• Irradiance Caching
• Photon Mapping
• Papers for Today
• Ray Grammar
• Papers for Next Time
Path Tracing is costly

- Needs tons of rays per pixel

Direct Illumination
Global Illumination

Indirect Illumination: smooth
Irradiance Cache

- The indirect illumination is smooth
- Store the indirect illumination

Irradiance Cache

- Interpolate nearby cached values
- But do full calculation for direct lighting
Questions?

• Why do we need “good” random numbers?
 – With a fixed random sequence, we see the structure in the error
Today

- Worksheet on Progressive Radiosity
- The Rendering Equation
- Ray Casting vs. Ray Tracing vs. Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Papers for Today
- Ray Grammar
- Papers for Next Time

Photon Mapping

- Preprocess: cast rays from light sources
 – independent of viewpoint
Photon Mapping

- Store photons
 - position + light power + incoming direction

Storing the Photon Map

- Efficiently store photons for fast access
- Use hierarchical spatial structure (kd-tree)
Rendering with Photon Map

- Cast primary rays
- For secondary rays: reconstruct irradiance using k closest photons
- Combine with irradiance caching and other techniques

Photon Map Results

![Image of Photon Map Result]
Readings for Today:

Photon Mapping - Caustics

- Special photon map for specular reflection and refraction
Comparison

Path Tracing
1000 paths/pixel

Photon mapping

(similar rendering time)

HW3: Photons in the k-d tree

- You start with query point & radius (red)
- You give the KDTree::CollectPhotonsInBox function a bounding box (yellow)
- The algorithm finds all k-d tree cells that overlap with bounding box (blue)
- The function returns all photons in those cells
- You need to discard all photons not in your original query radius
Closest Photon Details

• Find the tightest sphere that captures k photons
 – NOTE: HW3 code gives you all photons that *might* be in the query bounding box (you need to test for exact box and/or exact sphere)

• Divide the energy from those photons by the surface area covered by that sphere

• What about thin surfaces, concave corners, & convex corners?

Today

• Worksheet on Progressive Radiosity
• The Rendering Equation
• Ray Casting vs. Ray Tracing vs. Monte-Carlo Ray Tracing vs. Path Tracing
• Irradiance Caching
• Photon Mapping
• Papers for Today
 • Ray Grammar
• Papers for Next Time
Ray Grammar

- Classify local interaction:
 - E = eye
 - L = light
 - S = perfect specular reflection or refraction
 - G = glossy scattering
 - D = diffuse scattering

From Dutre et al.’s slides

Classic Ray Casting/Tracing

Ray casting: L D E

Ray tracing: L D S* E

“Adaptive Radiosity Textures for Bi-directional Ray Tracing”
Heckbert SIGGRAPH 1990
Photon Tracing

Radiosity: $L D^* E$

Caustics: $L S^* D E$
(or worse!)

“Adaptive Radiosity Textures for Bi-directional Ray Tracing”
Heckbert SIGGRAPH 1990

Questions?
Today

- Worksheet on Progressive Radiosity
- The Rendering Equation
- Ray Casting vs. Ray Tracing vs. Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Papers for Today
- Ray Grammar
- Papers for Next Time

Readings for Next Time: *(pick one)*

“Correlated Multi-Jittered Sampling”, Andrew Kensler, Pixar Technical Memo, 2013

Figure 1: The canonical arrangement. Heavy lines show the boundaries of the 1D jitter cells. Light lines show the horizontal and vertical sub-strata of N-rooks sampling. Samples are jittered within the subcells.

Figure 2: With correlated shuffling.

Figure 3: Polar warp with $m = 22$, $n = 7$.

Readings for Next Time: *(pick one)*

“Implicit Visibility and Antiradiance for Interactive Global Illumination”

Dachsbacher, Stamminger, Drettakis, and Durand
Siggraph 2007