Color

Elspeth McLean

Today's Class

- Announcements: Quiz \& Final Projects
- Readings for Today
- What is Color?
- Human Perception
- Color Blindness \& Metamerism
- Color Spaces
- LMS, RGB, XYZ, HSV, L*a*b*,
- Projection in Spatially Augmented Reality

Final Presentation Schedule

Tue Apr 18th
2:00 team of 2
2:18 team of 2
2:36 team of 2
2:54 individual
3:04 team of 2
3:22 team of 2
3:40 team of 2
3:58 done!

Fri Apr 21st
2:00 team of 2
2:18 team of 2
2:36 team of 2
2:54 individual
3:04 team of 2
3:22 team of 2
3:40 team of 2
3:58 done!

Tue Apr 25th
2:00 team of 2
2:18 team of 2
2:36 team of 2
2:54 individual
3:04 team of 2
3:22 team of 2
3:40 team of 2
3:58 done!

Final Presentation

- Summarize prior work as necessary
- You don't need to discuss papers we covered in class
- Be technical:
- What were the challenges?
- How did you solve them?
- Live demo / video / lots of images (depends on project)
- Use plenty of examples (both of success \& failure)
- Teams of 2:
- Both should present \& make it clear who did what
- Use your time wisely! Practice! \& time yourself!
- I will stop you mid-sentence if you run over

Well-written Research Paper / Report

- Motivation/context/related work
- Accomplishments / contributions of this work
- Clear description of algorithm
- Sufficiently-detailed to allow work to be reproduced
- Work is theoretically sound (hacks/arbitrary constants discouraged, but must be documented)
- Results
- well chosen examples
- clear tables/illustrations/visualizations
- with descriptive captions!
- Conclusions \& Potential Future Work
- limitations of the method are clearly stated

Today's Class

- Announcements: Quiz \& Final Projects
- Readings for Today
- What is Color?
- Human Perception
- Color Blindness \& Metamerism
- Color Spaces
- LMS, RGB, XYZ, HSV, L*a*b*,
- Projection in Spatially Augmented Reality

Reading for Today:

"Flash Photography Enhancement via Intrinsic Relighting", Eisemann \& Durand, SIGGRAPH 2004

no flash
warm ambiance, noisy

flash
flat lighting

combined result: original lighting, denoised

Reading for Today:

"Real-Time User-Guided Image Colorization with Learned Deep Priors", Zhang, Zhu, Isola, Geng, Lin, Yu, and Efros, SIGGRAPH 2017

Suggested colors

Reading for Today:

"ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps", Harrower \& Brewer, The Cartographic Journal, 2003.

Choropleth map: statistics per area must be careful about normalization

Total Population of 2000 Census Block Groups Population Density of 2000 Census Block Groups

https://en.wikipedia.org/wiki/Choropleth_map\#/media/File:Choropleth-density.png

Choose a scheme appropriate for:

- Sequential
- Qualitative
- Diverging

Emergency Response Decision Making

Today's Class

- Announcements: Quiz \& Final Projects
- Readings for Today
- What is Color?
- Human Perception
- Color Blindness \& Metamerism
- Color Spaces
- LMS, RGB, XYZ, HSV, L*a*b*,
- Projection in Spatially Augmented Reality

What is Color?

What is Color?

Neon Lamp

Illuminant F1
(one of the CIE standards for fluorescent lighting)

What color is the dress?

What does the viewer infer about the scene illumination?

Blue \& Black under yellow-tinted illumination?
White \& Gold under blue tinted illumination?

What is Color?

Cones do not "See" Colors

- Different wavelength, different intensity
- May have same response to a single cone

Dim green
Cone G: 0.25

Bright cyan
Cone G: 0.25

Response Comparison

- Different wavelength, different intensity
- Will have different responses for different cones

Dim green Cone R: 0.20 Cone G: 0.25
Cone B: 0.01
Bright cyan
Cone R: 0.20
Cone G: 0.25
Cone B: 0.25

Color Blindness

- Classical case: 1 type of cone is missing (e.g. red)
- Now Project onto lower-dim space (2D)
- Makes it impossible to distinguish some spectra

Ishihara Color Blindness Test

http://en.wikipedia.org/wiki/ Ishihara_color_test

- Deuteranopia: missing green cone
- Protanopia: missing red cone
- Tritanopa: missing blue cone (rare)

Metamerism: Apparent Matching

- When two materials look the same under one lighting condition (a coincidence), but look different under another:

http://gusgsm.com/metamerismo
- Remember that different spectral distribution of input light yield different visual stimuli
- We all experience some color blindness

Tetrachromacy: 4 Cones?!

Often it is only a slight mutation of the red or green cone (left diagram), and thus not be easily detectable by a vision test or enable enhanced color vision.

Glasses to "correct" Colorblindness?

- Enchroma is NOT a cure for color blindness.
- Results vary depending on the type and extent of color vision deficiency.
- Enchroma does not endorse use of the glasses to pass occupational screening tests such as the Ishihara test.

Today's Class

- Announcements: Quiz \& Final Projects
- Readings for Today
- What is Color?
- Human Perception
- Color Blindness \& Metamerism
- Color Spaces
- LMS, RGB, XYZ, HSV, L*a*b*,
- Projection in Spatially Augmented Reality

Standard Color Spaces

- Colorimetry: Science of color measurement
- Quantitative measurements of colors are crucial in many industries
- Television, computers, print, paint, luminaires
- Naive digital work uses a vague notion of RGB
- Unfortunately, RGB is not precisely defined, and depending on your monitor, you might get something different
- We need a principled color space...

CIE Color Matching Experiments

Figure 1-10
Tristimulus experiment

observer

CIE XYZ Color Space

- Can think of X, Y, Z as coordinates
- Linear transform from typical LMS or RGB
- Note that many points in XYZ do not correspond to visible colors!

$$
\begin{gathered}
\left(\begin{array}{l}
R \\
G \\
B
\end{array}\right)=\left(\begin{array}{ccc}
3.24 & -1.54 & -0.50 \\
-0.97 & 1.88 & 0.04 \\
0.06 & -0.20 & 1.06
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right) \\
\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{lll}
0.41 & 0.36 & 0.18 \\
0.21 & 0.72 & 0.07 \\
0.02 & 0.12 & 0.95
\end{array}\right)\left(\begin{array}{l}
R \\
G \\
B
\end{array}\right)
\end{gathered}
$$

Hering 1874: Opponent Colors

- Hypothesis of 3 types of receptors: Red/Green, Blue/Yellow, Black/White
- Explains well several visual phenomena

Red/Green Receptors

Blue/Yellow Receptors

Black/White Receptors

Hue Saturation Value (HSV)

- Value: from black to white
- Hue: dominant color (red, orange, etc)
- Saturation: from gray to vivid color

Color Opponents "Wiring"

- Sums for bright
- Differences for color oppor
- It's just a 3×3 matrix to convert HSV from/to LMS, RGB, or XYZ

First zone (or stage):
layer of retina with three independent types of cones

Second zone (or stage): signals from cones either excite or inhibit second layer of neurons, producing opponent signals

Linear Color Spaces: RGB/XYZ/YPbPr

- Equal steps in linear color spaces do not correspond to equal differences for human perception
- MacAdam ellipses visualize the lack of perceptual uniformity [MacAdam 1942]

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{lll}
0.4124 & 0.3576 & 0.1805 \\
0.2126 & 0.7152 & 0.0722 \\
0.0193 & 0.1192 & 0.9505
\end{array}\right]\left[\begin{array}{l}
R_{\text {linear }} \\
G_{\text {linear }} \\
B_{\text {linear }}
\end{array}\right]
$$

Today's Class

- Announcements: Quiz \& Final Projects
- Readings for Today
- What is Color?
- Human Perception
- Color Blindness \& Metamerism
- Color Spaces
- LMS, RGB, XYZ, HSV, L*a*b*,
- Projection in Spatially Augmented Reality

Spatially Augmented Reality (SAR) Projection

Tangible Interface for Architectural Design

Exterior \& interior walls
Tokens for:

- Windows
- Wall/floor colors
- North arrow

Overhead camera

Projection geometry

Inferred design

Motivation:

Can we do a better job reproducing the desired appearance?

Related Work: Radiometric Compensation

- Minimize artifacts caused by light modulation with local surface [Bimber et al. 2005; Nayar et al. 2003; Grundhöffer \& Bimber 2008]
- Does not consider global light inter-reflection

Grundhöffer \& Bimber 2008

Our Problem Statement

- Known scene geometry
- Known surface reflectances, all ideal diffuse
- Fixed, calibrated projectors
- Given:

Desired target surface appearance (texture) for each physical surface

- Solve for:

Projection texture for each physical surface that most faithfully reproduces the desired appearance

Related Work: Reverse Radiosity

Forward lighting with radiosity

$$
\underset{\substack{\text { values for } \\
\text { rendering }}}{\qquad \text { form factor }} \begin{aligned}
& \text { matrix }
\end{aligned} \quad \text { direct }
$$

Inverse lighting with radiosity: Reverse Radiosity (RR)

- [Bimber et al. 2006]
$\underset{\text { projection values }}{E=(I-F) B}$

L*a*b*: a perceptual color space

Designed to match human color perception data

$$
\begin{aligned}
\begin{array}{r}
\text { intensity } \\
\text { red-green } \\
\text { yelow-blue }
\end{array}
\end{aligned}\left[\begin{array}{l}
L \\
a \\
b
\end{array}\right]=\left[\begin{array}{c}
116 h\left(\frac{Y}{Y_{n}}\right)-16 \\
500\left(h\left(\frac{X}{X_{n}}\right)-h\left(\frac{Y}{Y_{n}}\right)\right) \\
200\left(h\left(\frac{Y}{Y_{n}}\right)-h\left(\frac{Z}{Z_{n}}\right)\right)
\end{array}\right] \begin{array}{ll}
h(t) & = \begin{cases}t^{\frac{1}{3}} & t>(6 / 29)^{3} \\
\frac{1}{3}\left(\frac{29}{6}\right)^{2} t+\frac{4}{29} & \text { Otherwise }\end{cases}
\end{array}
$$

L*a*b* * is nonlinear, a challenge for optimization

Quantitative Perceptual Comparison

$$
\Delta E=\sqrt{\left(L_{1}-L_{2}\right)^{2}+\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}}
$$

- Where $2.3 \Delta E=\mathrm{JND}$ (just noticeable difference)
- The MacAdams ellipses are more equal size circles in $L^{*} a^{*} b^{*}$

Our Optimization Formulation

Absolute Error:

$$
\begin{aligned}
& \text { desired appearance } \downarrow \text { projection result } \\
& \phi_{a b s}=\frac{\sum_{i} A_{i}\left[\left(L_{i}-L_{i}^{\prime}\right)^{2}+\left(a_{i}-a_{i}^{\prime}\right)^{2}+\left(b_{i}-b_{i}^{\prime}\right)^{2}\right]}{A_{\text {avg }}}
\end{aligned}
$$

Spatial Error:

$$
\phi_{s p t}=\sum_{(i, j) \in n b d}\left[\left(L_{i}-L_{j}\right)-\left(L_{i}^{\prime}-L_{j}^{\prime}\right)\right]^{2}+\left[\left(a_{i}-a_{j}\right)-\left(a_{i}^{\prime}-a_{j}^{\prime}\right)\right]^{2}
$$

$$
+\left[\left(b_{i}-b_{j}\right)-\left(b_{i}^{\prime}-b_{j}^{\prime}\right)\right]^{2}
$$

gradient in
desired appearance
gradient in projection result

Complete Objective Function: $\phi=\alpha \phi_{a b s}+(1-\alpha) \phi_{s p t}$ Box constraints: We use $\alpha=0.9$
minimum \& maximum brightness of projector system

