CSCI 4560/6560 Computational Geometry

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

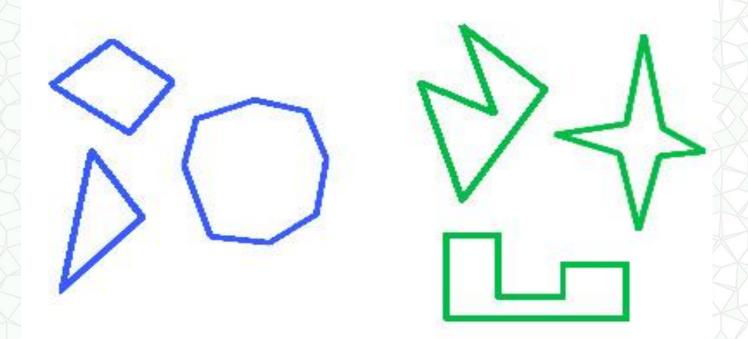
Lecture 1: Introduction & Convex Hulls

Outline for Today

- 2D Planar Convex Hulls
 - Definitions
 - A few different algorithms to construct
 - Discussion of accuracy & robustness
 - Analysis of running time
- Applications of Computational Geometry
- Introductions
- Website & Syllabus
- Homework 1: Convex Hulls

Convex: Shape has no inward corners or curving faces.

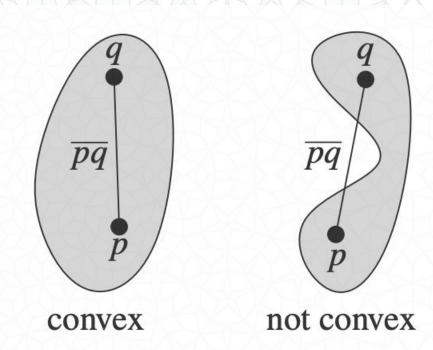
Concave: Has inward corner(s) or inward curving face(s).



http://img.sparknotes.com/figures/B/b333d91dce2882b2db48b8ad670cd15a/convexconcave.gif

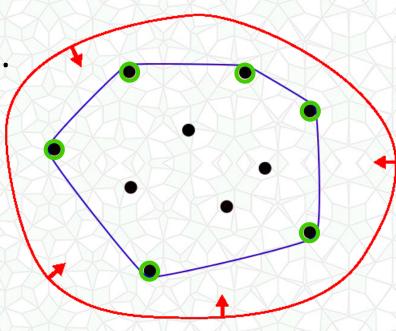
Convex vs. Non-Convex

A subset S of the plane is called convex if and only if for any pair of points $p,q \in S$ the line segment pq is completely contained in S.



Convex Hull: The smallest convex shape that contains all of the input points / elements.

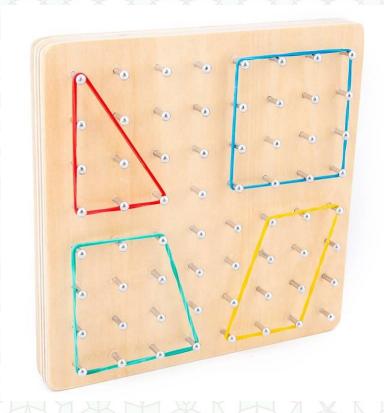
- In 2D, put a nail in the board at each point location. Stretch a rubber band over / around the outside of these nails.
- The final position of the rubber band is the convex hull.
- The nails / points touching the rubber band are the extreme points.



http://en.wikipedia.org/wiki/File:ConvexHull.svg

Convex Hull: The smallest convex shape that contains all of the input points / elements.

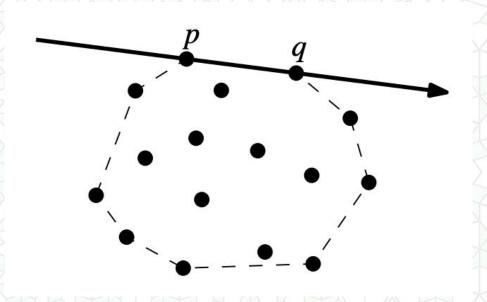
- In 2D, put a nail in the board at each point location. Stretch a rubber band over / around the outside of these nails.
- The final position of the rubber band is the convex hull.
- The nails / points touching the rubber band are the extreme points.



https://themontessoriclub.com/montessoripeg-board-the-montessori-club/

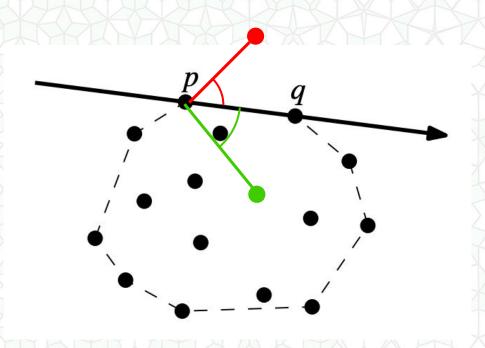
Naive Algorithm

- Step 1: Find all directed line segments pq that are on the convex hull.
 - A line segment is on the convex hull if when looking down the line segment from p to q, there are no points to the left of that line.
- Step 2: Organize those line segments in clockwise order.
- Step 3: Output the starting point of each line segments
 - This will be all of the extreme points of the convex hull.



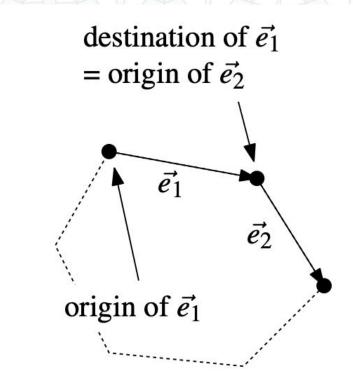
Naive Algorithm

- Step 1: Find all directed line segments pq that are on the convex hull.
 - A line segment is on the convex hull if when looking down the line segment from p to q, there are no points to the left of that line.
- Step 2: Organize those line segments in clockwise order.
- Step 3: Output the starting point of each line segments
 - This will be all of the extreme points of the convex hull.



Naive Algorithm

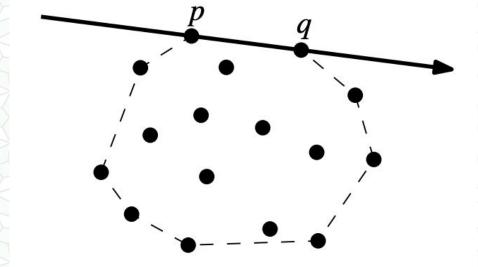
- Step 1: Find all directed line segments pq that are on the convex hull.
 - A line segment is on the convex hull if when looking down the line segment from p to q, there are no points to the left of that line.
- Step 2: Organize those line segments in clockwise order.
- Step 3: Output the starting point of each line segments
 - This will be all of the extreme points of the convex hull.



Cost of the Naive Algorithm?

- Let n be # of input points, and h be the number of extreme points on convex hull.
- Step 1: Find edges

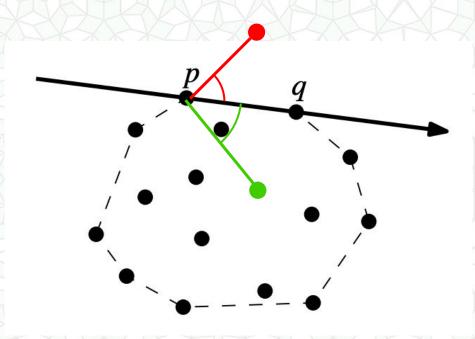
Step 2: Order edges



Step 3: Output edges

Cost of the Naive Algorithm?

- Let n be # of input points, and h be the number of extreme points on convex hull.
- Step 1: Find edges
 - For n points
 - $n^*(n-1)$ directed segments to consider
 - For each, check all other n points to see if any lie to the left.
 - \bullet $O(n^3)$
- Step 2: Order edges
 - For each edge \overline{pq} , finding the next edge (that starts with q) takes n time.
 - \bullet $O(h^2)$
- Step 3: Output edges
 - O(h)

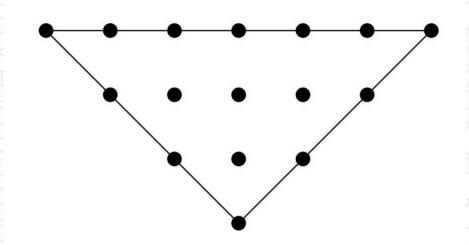


Besides the expensive running time, what are the problems with Naive Algorithm?



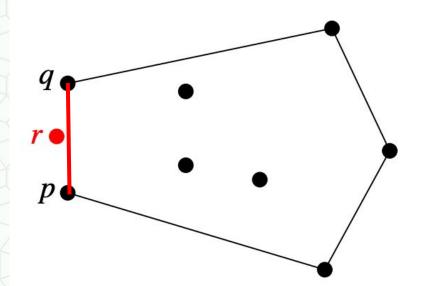
Besides the expensive running time, what are the problems with Naive Algorithm?

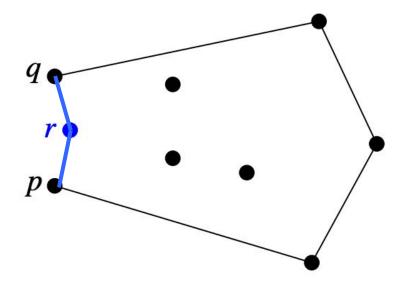
- Is it well defined?
 Do we agree on what is the right answer in all cases?
- Might we have problems with numerical precision?
 Floating point rounding errors?



Floating point rounding errors

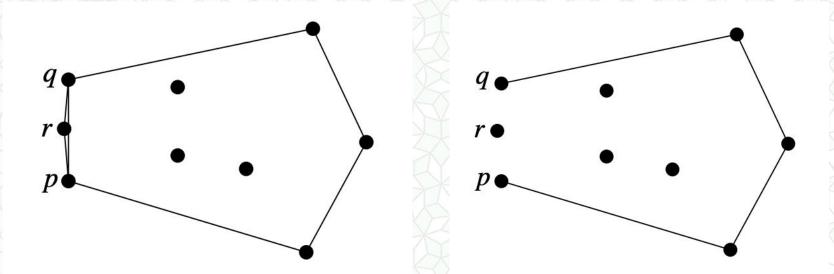
- May cause a point to be missed that should be on the boundary
- May cause a point to be included that should not be on the boundary





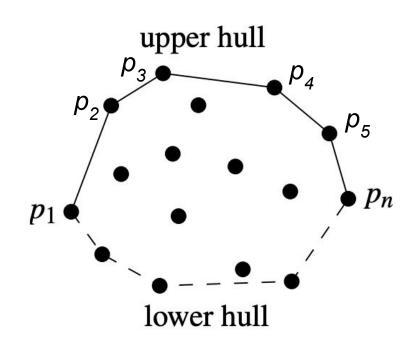
Or worse...

- Judgements about being left vs. right side may be inconsistent
- This can cause duplicates or gaps in the boundary



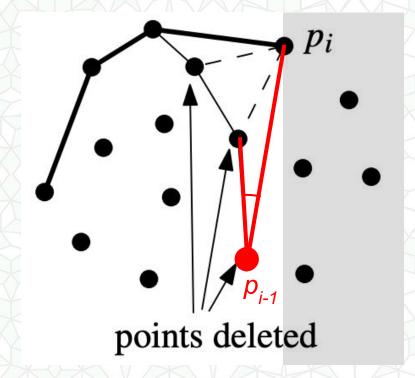
Let's try again...

- We will construct the upper hull (and then similarly, the lower hull)
- Maintain a list of the points
 p₁, p₂, .. p_i that form the current upper hull



Let's try again... Construct the Upper Hull

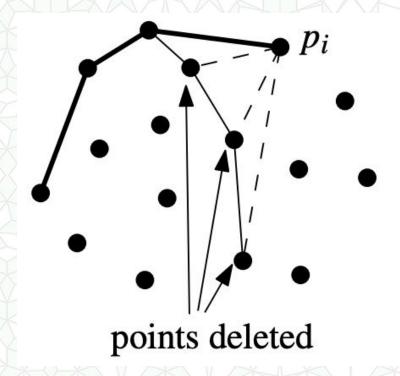
- Step 1: Sort the input points by x coordinate. The leftmost point must be on the upper hull.
- Step 2: Walk through the points from left to right. Add p_i to the upper hull.
- Step 3: For each added point...
 if the angle p_{i-2} p_{i-1} p_i
 is a left bend, remove p_{i-1}
 (& check previous point too)



Analysis of Constructing the Upper Hull?

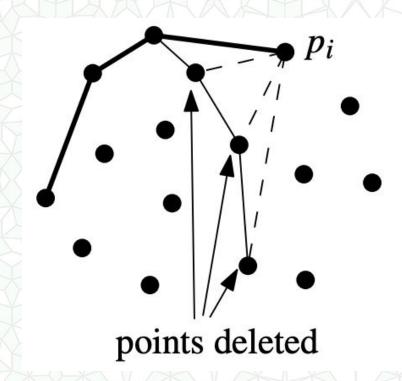
- Let n be # of input points
- Step 1: Sort
- Step 2: Add each point
- Step 3: Remove points

Overall:



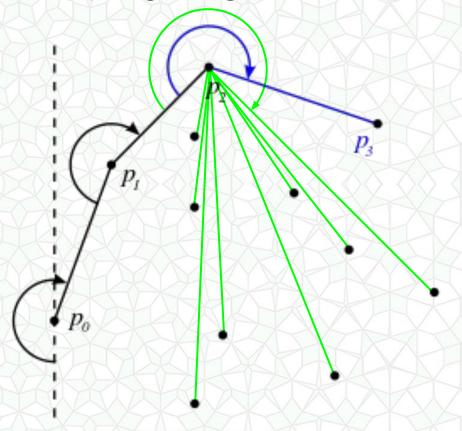
Analysis of Constructing the Upper Hull?

- Let n be # of input points
- Step 1: Sort
 - O(n log n)
- Step 2: Add each point
 - *O(n)* total
- Step 3: Remove points
 - O(n) max total cost
- Overall:
 - O(n log n)



Can we do better? "Gift Wrapping" Algorithm

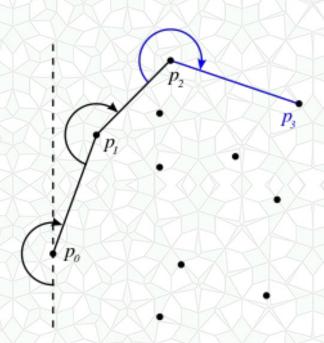
- Step 1: Find p₀
 The point with the smallest x coordinate.
- Step 2: "Walk around" the point set in the clockwise direction.
 - At each point e.g., p₂, find the next point, p₃ on the hull.
 - Check all other points...
 - Find the smallest outer angle between lines p₁p₂& p₂p₃



Gift Wrapping Algorithm Analysis

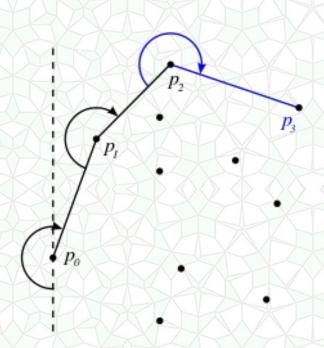
- Let n be # of input points, and
 h be the number of extreme points on convex hull.
- Step 1: Find p₀

Step 2: Find each next point on the hull



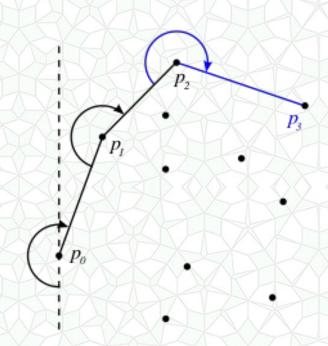
Gift Wrapping Algorithm Analysis

- Let n be # of input points, and
 h be the number of extreme points on convex hull.
- Step 1: Find p_0
 - O(n)
- Step 2: Find each next point on the hull
 - h times
 - find the next point = O(n)
 - Overall O(n*h)
- Is this better?



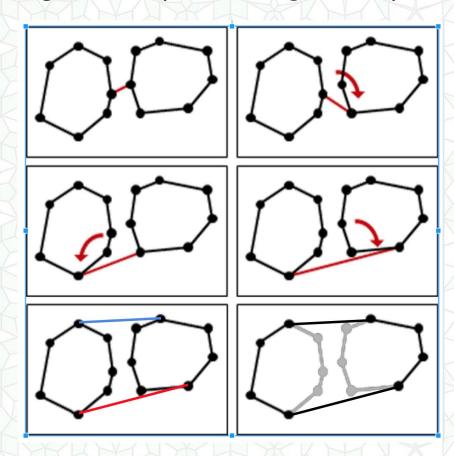
Gift Wrapping Algorithm Analysis

- Let n be # of input points, and
 h be the number of extreme points on convex hull.
- Step 1: Find p_0
 - O(n)
- Step 2: Find each next point on the hull
 - h times
 - find the next point = O(n)
 - Overall O(n*h)
- Is this better?
 - Worst case? h = n most/all input points are on the convex hull O(n²)
 - Best case? h < log n
 and then it is better than previous algorithm



Recursive Divide & Conquer Algorithm (like Merge Sort)

- Split Step:
 - Sort points by the *x* coordinate
 - Split into 2 equal-sized groups
 - Then recurse...
- Merge Step:
 - Find rightmost point in left hull, and leftmost point in right hull.
 - Walk down to find lower tangent
 - & walk up for upper tangent
 - Discard points in between upper & lower tangents

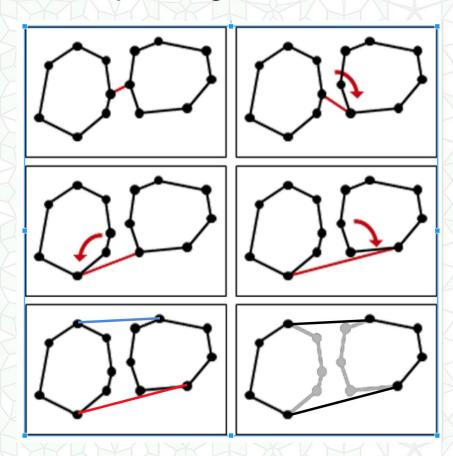


Analysis of Recursive Divide & Conquer Algorithm

Sort points:

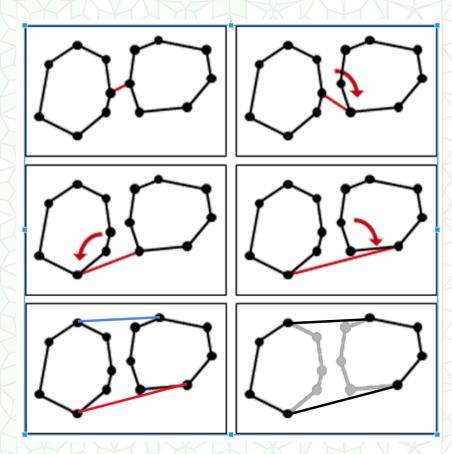
Split Step:

Merge Step:



Analysis of Recursive Divide & Conquer Algorithm

- Sort points: only once
 - O(n log n)
- Split Step:
 - n splits
- Merge Step:
 - *n* merges
 - each of the *n* points will
 be removed at most once
- Overall:
 - O(n log n)



Beyond 2D Planar Convex Hulls

- 3D Convex Hulls... & higher dimensions!
- Image Based Visual Hulls (not the same!)

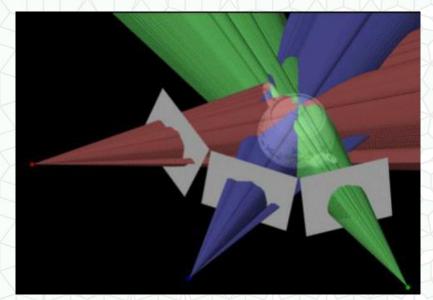
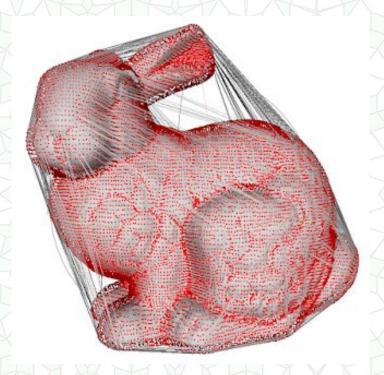


Image-Based Visual Hulls, Matusik et al, SIGGRAPH 2000



http://diskhkme.blogspot.com/2015/10/convex-hull-algorithm-in-unity-2-3d.html

Outline for Today

- 2D Planar Convex Hulls
 - Definitions
 - A few different algorithms to construct
 - Discussion of accuracy & robustness
 - Analysis of running time
- Applications of Computational Geometry
- Introductions
- Website & Syllabus
- Homework 1: Convex Hulls

Applications for Computational Geometry

- Computer Graphics / Games / Virtual Reality / Computer Vision
 primitive intersections, hidden surface removal, ray tracing, collision detection
- Robotics
 motion planning, kinematics, robot arm placement
- Geographics Information Systems (GIS)
 modeling terrain, river networks, average rainfall, population, map overlays
- CAD/CAM (manufacturing)
 intersection & union of objects, physical simulations, feasibility of assembly
- Other: Molecular Modeling, Optical Character Recognition (OCR), etc.
- General purpose database / data record comparisons can be very high dimension! (more than 3D!)

Introductions

- Let's go around the "room" and introduce ourselves
 Share anything you are comfortable sharing
- Name
- Current degree program (department, major, dual major)
- Number of terms you've been at RPI
- Possible connections to Computational Geometry...
 - Prior course work
 - Current research
 - Extra-curricular interests
- What you hope to learn this semester

Outline for Today

- 2D Planar Convex Hulls
 - Definitions
 - A few different algorithms to construct
 - Discussion of accuracy & robustness
 - Analysis of running time
- Applications of Computational Geometry
- Introductions
- Website & Syllabus
- Homework 1: Convex Hulls