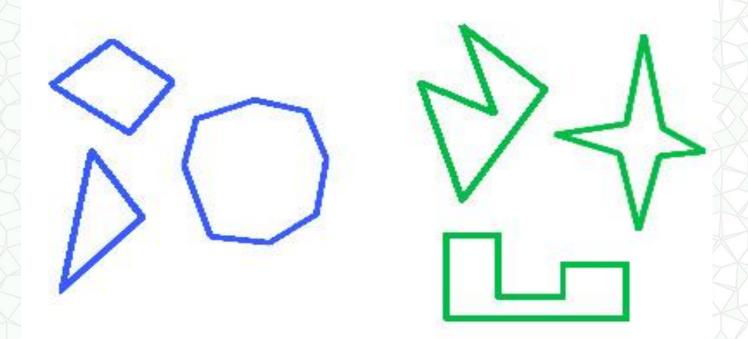
#### CSCI 4560/6560 Computational Geometry

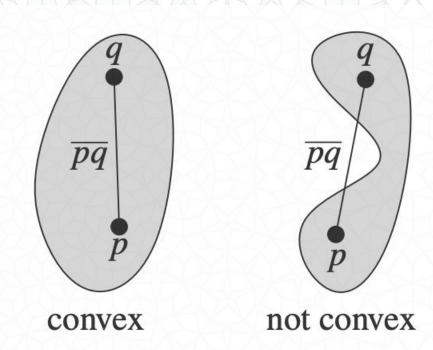
https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/


# Lecture 1: Introduction & Convex Hulls

#### **Outline for Today**

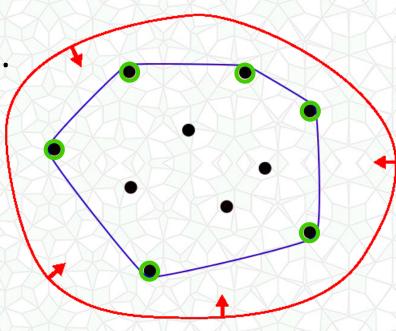
- 2D Planar Convex Hulls
  - Definitions
  - A few different algorithms to construct
  - Discussion of accuracy & robustness
  - Analysis of running time
- Applications of Computational Geometry
- Introductions
- Website & Syllabus
- Homework 1: Convex Hulls

Convex: Shape has no inward corners or curving faces.


Concave: Has inward corner(s) or inward curving face(s).



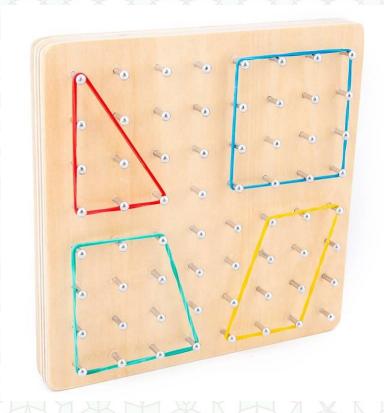
http://img.sparknotes.com/figures/B/b333d91dce2882b2db48b8ad670cd15a/convexconcave.gif


#### Convex vs. Non-Convex

A subset S of the plane is called convex if and only if for any pair of points  $p,q \in S$  the line segment pq is completely contained in S.



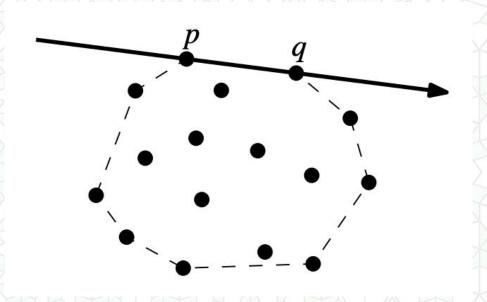
Convex Hull: The smallest convex shape that contains all of the input points / elements.


- In 2D, put a nail in the board at each point location. Stretch a rubber band over / around the outside of these nails.
- The final position of the rubber band is the convex hull.
- The nails / points touching the rubber band are the extreme points.



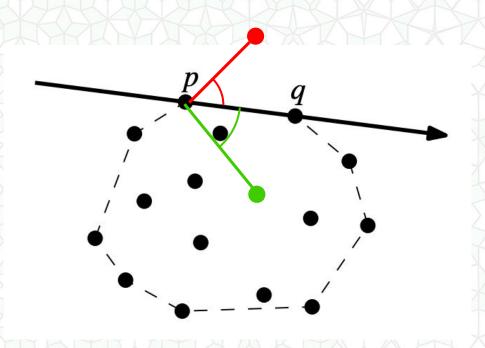
http://en.wikipedia.org/wiki/File:ConvexHull.svg

# Convex Hull: The smallest convex shape that contains all of the input points / elements.


- In 2D, put a nail in the board at each point location. Stretch a rubber band over / around the outside of these nails.
- The final position of the rubber band is the convex hull.
- The nails / points touching the rubber band are the extreme points.

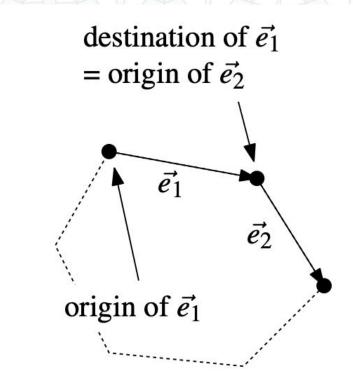


https://themontessoriclub.com/montessoripeg-board-the-montessori-club/


#### Naive Algorithm

- Step 1: Find all directed line segments pq that are on the convex hull.
  - A line segment is on the convex hull if when looking down the line segment from p to q, there are no points to the left of that line.
- Step 2: Organize those line segments in clockwise order.
- Step 3: Output the starting point of each line segments
  - This will be all of the extreme points of the convex hull.




#### Naive Algorithm

- Step 1: Find all directed line segments pq that are on the convex hull.
  - A line segment is on the convex hull if when looking down the line segment from p to q, there are no points to the left of that line.
- Step 2: Organize those line segments in clockwise order.
- Step 3: Output the starting point of each line segments
  - This will be all of the extreme points of the convex hull.



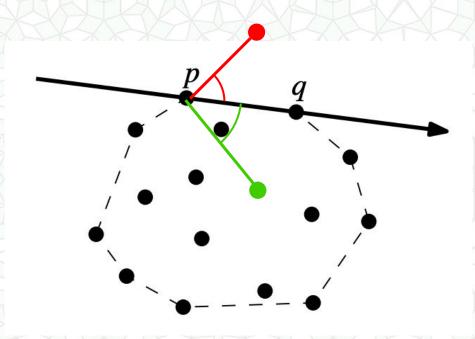
#### Naive Algorithm

- Step 1: Find all directed line segments pq that are on the convex hull.
  - A line segment is on the convex hull if when looking down the line segment from p to q, there are no points to the left of that line.
- Step 2: Organize those line segments in clockwise order.
- Step 3: Output the starting point of each line segments
  - This will be all of the extreme points of the convex hull.



#### Cost of the Naive Algorithm?

- Let n be # of input points, and h be the number of extreme points on convex hull.
- Step 1: Find edges

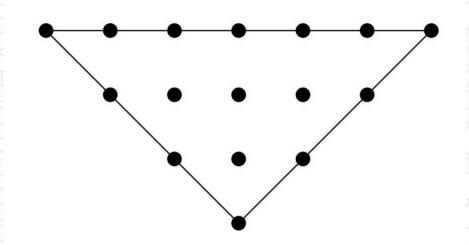

Step 2: Order edges




Step 3: Output edges

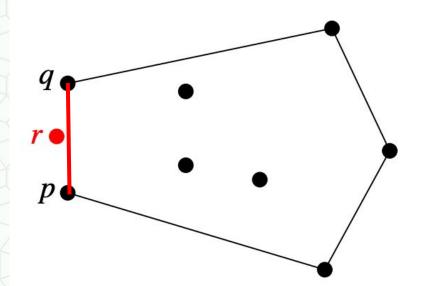
#### Cost of the Naive Algorithm?

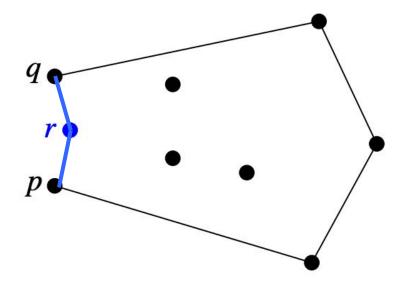
- Let n be # of input points, and h be the number of extreme points on convex hull.
- Step 1: Find edges
  - For n points
  - $n^*(n-1)$  directed segments to consider
  - For each, check all other n points to see if any lie to the left.
  - $\bullet$   $O(n^3)$
- Step 2: Order edges
  - For each edge  $\overline{pq}$ , finding the next edge (that starts with q) takes n time.
  - $\bullet$   $O(h^2)$
- Step 3: Output edges
  - O(h)




## Besides the expensive running time, what are the problems with Naive Algorithm?




## Besides the expensive running time, what are the problems with Naive Algorithm?


- Is it well defined?
  Do we agree on what is the right answer in all cases?
- Might we have problems with numerical precision?
   Floating point rounding errors?

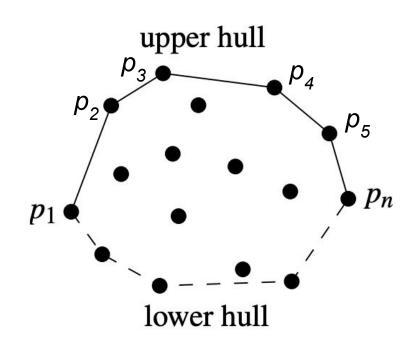


#### Floating point rounding errors

- May cause a point to be missed that should be on the boundary
- May cause a point to be included that should not be on the boundary

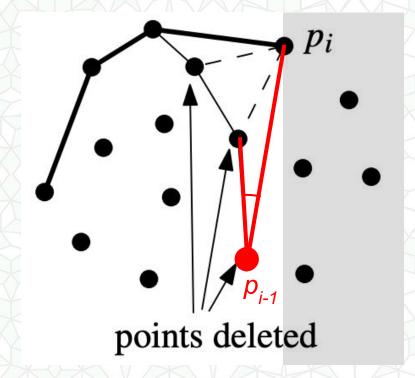





#### Or worse...

- Judgements about being left vs. right side may be inconsistent
- This can cause duplicates or gaps in the boundary

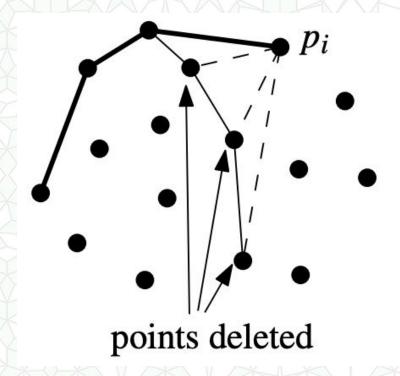



#### Let's try again...

- We will construct the upper hull (and then similarly, the lower hull)
- Maintain a list of the points
  p<sub>1</sub>, p<sub>2</sub>, .. p<sub>i</sub> that form the current upper hull

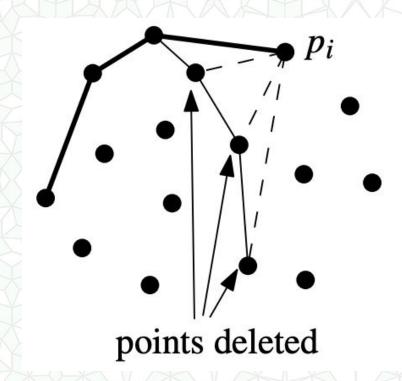


#### Let's try again... Construct the Upper Hull


- Step 1: Sort the input points by x coordinate. The leftmost point must be on the upper hull.
- Step 2: Walk through the points from left to right. Add p<sub>i</sub> to the upper hull.
- Step 3: For each added point...
  if the angle p<sub>i-2</sub> p<sub>i-1</sub> p<sub>i</sub>
  is a left bend, remove p<sub>i-1</sub>
  (& check previous point too)

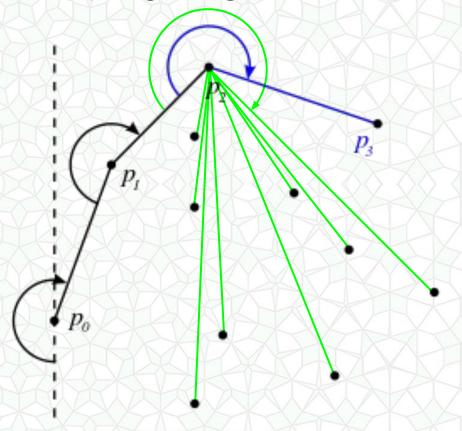


#### Analysis of Constructing the Upper Hull?


- Let n be # of input points
- Step 1: Sort
- Step 2: Add each point
- Step 3: Remove points

Overall:

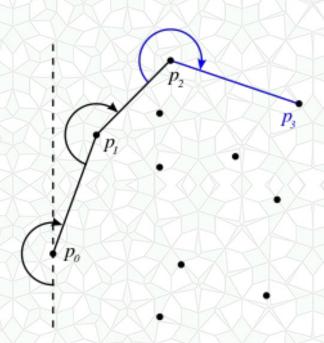



#### Analysis of Constructing the Upper Hull?

- Let n be # of input points
- Step 1: Sort
  - O(n log n)
- Step 2: Add each point
  - *O(n)* total
- Step 3: Remove points
  - O(n) max total cost
- Overall:
  - O(n log n)

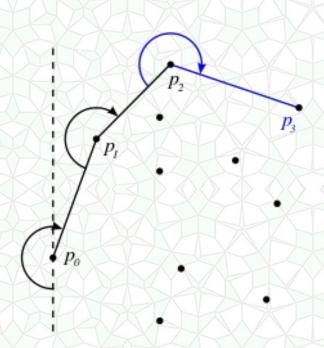


#### Can we do better? "Gift Wrapping" Algorithm


- Step 1: Find p<sub>0</sub>
  The point with the smallest x coordinate.
- Step 2: "Walk around" the point set in the clockwise direction.
  - At each point e.g., p<sub>2</sub>, find the next point, p<sub>3</sub> on the hull.
  - Check all other points...
  - Find the smallest outer angle between lines p<sub>1</sub>p<sub>2</sub>& p<sub>2</sub>p<sub>3</sub>

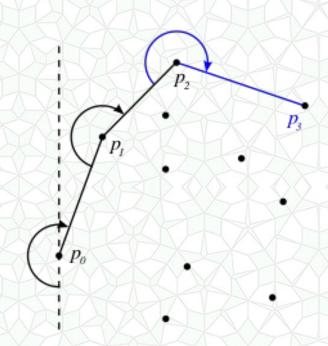


#### Gift Wrapping Algorithm Analysis


- Let n be # of input points, and
  h be the number of extreme points on convex hull.
- Step 1: Find p<sub>0</sub>

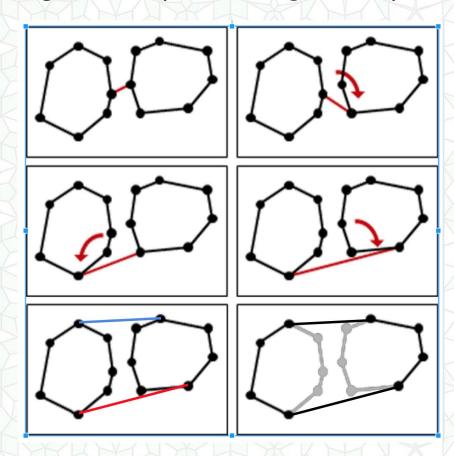
Step 2: Find each next point on the hull




#### Gift Wrapping Algorithm Analysis

- Let n be # of input points, and
  h be the number of extreme points on convex hull.
- Step 1: Find  $p_0$ 
  - O(n)
- Step 2: Find each next point on the hull
  - h times
  - find the next point = O(n)
  - Overall O(n\*h)
- Is this better?



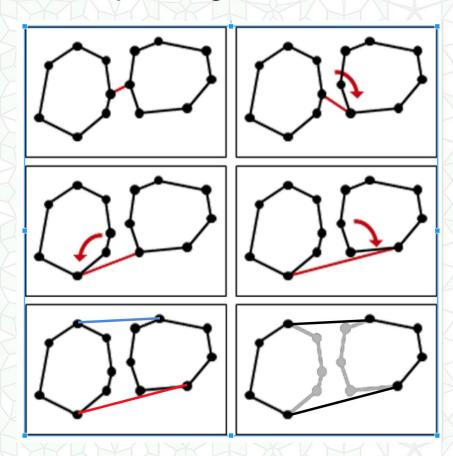

#### Gift Wrapping Algorithm Analysis

- Let n be # of input points, and
  h be the number of extreme points on convex hull.
- Step 1: Find  $p_0$ 
  - O(n)
- Step 2: Find each next point on the hull
  - h times
  - find the next point = O(n)
  - Overall O(n\*h)
- Is this better?
  - Worst case? h = n most/all input points are on the convex hull O(n²)
  - Best case? h < log n</li>
    and then it is better than previous algorithm



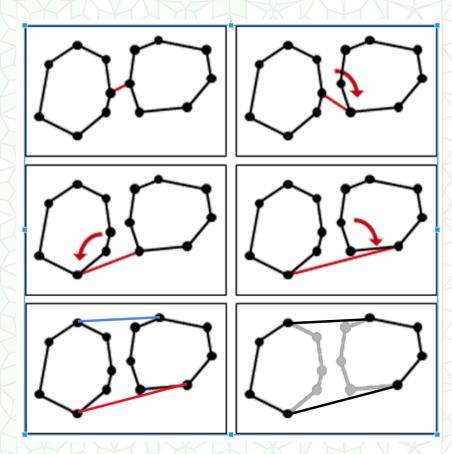
#### Recursive Divide & Conquer Algorithm (like Merge Sort)

- Split Step:
  - Sort points by the *x* coordinate
  - Split into 2 equal-sized groups
  - Then recurse...
- Merge Step:
  - Find rightmost point in left hull, and leftmost point in right hull.
  - Walk down to find lower tangent
  - & walk up for upper tangent
  - Discard points in between upper & lower tangents




#### Analysis of Recursive Divide & Conquer Algorithm

Sort points:


Split Step:

Merge Step:



#### Analysis of Recursive Divide & Conquer Algorithm

- Sort points: only once
  - O(n log n)
- Split Step:
  - n splits
- Merge Step:
  - *n* merges
  - each of the *n* points will
    be removed at most once
- Overall:
  - O(n log n)



#### Beyond 2D Planar Convex Hulls

- 3D Convex Hulls... & higher dimensions!
- Image Based Visual Hulls (not the same!)

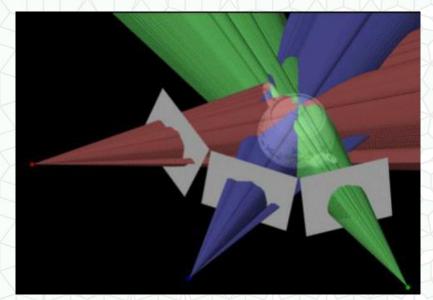
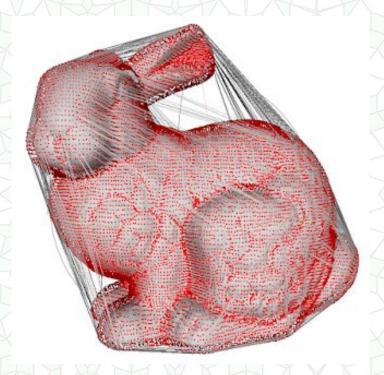




Image-Based Visual Hulls, Matusik et al, SIGGRAPH 2000



http://diskhkme.blogspot.com/2015/10/convex-hull-algorithm-in-unity-2-3d.html

#### **Outline for Today**

- 2D Planar Convex Hulls
  - Definitions
  - A few different algorithms to construct
  - Discussion of accuracy & robustness
  - Analysis of running time
- Applications of Computational Geometry
- Introductions
- Website & Syllabus
- Homework 1: Convex Hulls

#### **Applications for Computational Geometry**

- Computer Graphics / Games / Virtual Reality / Computer Vision
  primitive intersections, hidden surface removal, ray tracing, collision detection
- Robotics
   motion planning, kinematics, robot arm placement
- Geographics Information Systems (GIS)
  modeling terrain, river networks, average rainfall, population, map overlays
- CAD/CAM (manufacturing)
  intersection & union of objects, physical simulations, feasibility of assembly
- Other: Molecular Modeling, Optical Character Recognition (OCR), etc.
- General purpose database / data record comparisons can be very high dimension! (more than 3D!)

#### Introductions

- Let's go around the "room" and introduce ourselves
  Share anything you are comfortable sharing
- Name
- Current degree program (department, major, dual major)
- Number of terms you've been at RPI
- Possible connections to Computational Geometry...
  - Prior course work
  - Current research
  - Extra-curricular interests
- What you hope to learn this semester

#### **Outline for Today**

- 2D Planar Convex Hulls
  - Definitions
  - A few different algorithms to construct
  - Discussion of accuracy & robustness
  - Analysis of running time
- Applications of Computational Geometry
- Introductions
- Website & Syllabus
- Homework 1: Convex Hulls