
CSCI 4560/6560 Computational Geometry
https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Lecture 2:
Line Segment
Intersections

Outline for Today

● Questions about Homework 1?
Questions about CGAL/Qt installation?

● Motivating Applications for Line Segment Intersection Problem
● Line/Segment Intersection Math
● Naive vs. Output Sensitive Algorithms
● A Plane/Line Sweep Algorithm
● Specific Choices for Data Structures
● Analysis
● Corner Cases / Degeneracies
● Next Time

Homework 1
● Questions?
● Installation

Success/Failure?

Outline for Today

● Questions about Homework 1?
Questions about CGAL/Qt installation?

● Motivating Applications for Line Segment Intersection Problem
● Line/Segment Intersection Math
● Naive vs. Output Sensitive Algorithms
● A Plane/Line Sweep Algorithm
● Specific Choices for Data Structures
● Analysis
● Corner Cases / Degeneracies
● Next Time

Motivating Application: Cartography Map Overlay
● 2 map layers storing the

rivers & roads in NYS
● Each road/river stored as

a polyline - sequence of
line segments

● Find all intersections
between a road segment
and a river segment

● These are the bridges
we need to build,
inspect, repair, etc.

https://upload.wikimedia.org/wikipedia/commons/1/17/NYInterstates.svghttps://www.mapsof.net/new-york/new-york-rivers-and-lakes

Application: Machine Learning
● Is my data classifiable? Is my data separable?

Computational Geometry: An Introduction
Preparata & Shamos, Springer 1985

wolf

wolf

wolf

wolf

wolf

wolf

wolf

coyote

coyote

coyote

coyote
coyote

coyote

coyote or wolf?

Self-Intersection of Non Convex Polygons

Computational Geometry: An Introduction
Preparata & Shamos, Springer 1985

Hidden Line (Hidden Surface) Removal
● A classic problem from the early days of Computer Graphics
● Identify and remove portions of the object that are not visible

from a particular viewing angle

Computational Geometry: An Introduction
Preparata & Shamos, Springer 1985

Outline for Today

● Questions about Homework 1?
Questions about CGAL/Qt installation?

● Motivating Applications for Line Segment Intersection Problem
● Line/Segment Intersection Math
● Naive vs. Output Sensitive Algorithms
● A Plane/Line Sweep Algorithm
● Specific Choices for Data Structures
● Analysis
● Corner Cases / Degeneracies
● Next Time

Intersection of 2 Lines in a Plane

https://en.wikipedia.org/wiki/Linear_equation

Intersection of 2 Lines in a Plane
● Using line slope equations:

● Set them equal to each other:

● Solve for x and y:

● Concerns?

https://en.wikipedia.org/wiki/Linear_equation

Intersection of 2 Lines in a Plane
● Using line slope equations:

● Set them equal to each other:

● Solve for x and y:

● Concerns?
● Does it handle vertical lines?
● How do we detect parallel (non-intersecting) lines?
● How do we determine if line segments intersect (between endpoints)?

https://en.wikipedia.org/wiki/Linear_equation

Intersection of 2 Line Segments in a Plane
● Let’s use the Parametric Equation for a line segment:

● For every value of t from in the interval [0,1],
Plug t into this equation, and you’ll get a point on the line segment

● Linearly interpolating
between the endpoints

● A weighted average of
the endpoints

P0 = (x1 , y1)

P1 = (x2 , y2)

Intersection of 2 Line Segments in a Plane
● Two parametric

equations:

● Solve for t and u:

● Concerns?
● Vertical lines?
● Parallel lines?
● Line vs. segment intersection?

https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection

Intersection of 2 Line Segments in a Plane
● Two parametric

equations:

● Solve for t and u:

● Concerns?
● Vertical lines?
● Parallel lines?
● Line vs. segment intersection?

https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection

Outline for Today

● Questions about Homework 1?
Questions about CGAL/Qt installation?

● Motivating Applications for Line Segment Intersection Problem
● Line/Segment Intersection Math
● Naive vs. Output Sensitive Algorithms
● A Plane/Line Sweep Algorithm
● Specific Choices for Data Structures
● Analysis
● Corner Cases / Degeneracies
● Next Time

Line Segment Intersection - Brute Force Solution
● Ignore labeling of road

vs. river (just compare
everything)

● Analysis?

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 2

Line Segment Intersection - Brute Force Solution
● Ignore labeling of road vs.

river (just compare
everything)

● Nested for loop:
Intersect each segment
with every other segment

● Analysis?
O(n2)

● Can we do better?

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 2

Definition: Output Sensitive

● When algorithm running time depends on
the size of the output for that specific input

● The Convex Hull Algorithms from last
n = # of input points
h = # of points on final convex hull
● Naive: O(n3)
● Compute Upper Hull: O(n log n)
● Gift Wrapping:

O(n * h) ← output sensitive!

● … there are also O(n log h) convex hull algorithms!

https://medium.com/@harshitsikchi/convex-hulls-explained-baab662c4e94

Output Sensitive Line Segment Intersection

● For specific worst case inputs, O(n2) is the best we can do…

 But most problems aren’t worst case!

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 2

Outline for Today

● Questions about Homework 1?
Questions about CGAL/Qt installation?

● Motivating Applications for Line Segment Intersection Problem
● Line/Segment Intersection Math
● Naive vs. Output Sensitive Algorithms
● A Plane/Line Sweep Algorithm
● Specific Choices for Data Structures
● Analysis
● Corner Cases / Degeneracies
● Next Time

A Classic Computational Geometry Tool:
The Line-Sweep (or Plane-Sweep) Algorithm

● Incrementally focus on a
subset of the data at a time

● Sweep line will move from top
to bottom across our dataset

● Sweep line/plane is used to
define the current status

● Active segments =
those that touch/intersect the
sweep line’s current position

processing
complete

active
processing

processing not
yet started

A Classic Computational Geometry Tool:
The Line-Sweep (or Plane-Sweep) Algorithm

● We will only look for
intersections between
green segments

● We will never check for
intersections between a
red line and a blue line

● Why is this ok?

processing
complete

active
processing

processing not
yet started

● Line segment added
to active set

● Line segment removed
from active set

● Line segment intersection

As line sweeps down, handle Events in Event Queue
We know “when” (vertical position)

these events will happen and
can pre-schedule them.

Simply sort the y coordinates of all
of the input line segments.

We don’t know when
these will happen!

This is what we’re trying
to solve for!

Add segA
Add segB
segA & segB intersect
Remove segB
Add segC
segA & segC intersect
Remove segA
Remove segC

“time”

Intersections between Active Segments
● Must we intersect every active

segment to every other active
segment?

ab cd efg

Intersections between Active Segments
● Must we intersect every active

segment to every other active
segment?

● No… We can do better!
● Maintain the active segments

ordered by the x position of
intersection with the current
sweep line

● Only compare segments that
are adjacent in this ordering

ab cd efg

Intersections between Active Segments
● When a segment (f) is removed

ab cd e
f

g

Intersections between Active Segments
● When a segment (f) is removed

d g f b e a c
d g b e a c

The newly adjacent
segments (g & b)
are checked for intersection ab cd e

f
g

Intersections between Active Segments
● When a segment (g) is added

ab cd efg

Intersections between Active Segments
● When a segment (g) is added

d f b a e c
d g f b a e c

The newly adjacent segments
(d & g, g & f)
are checked for intersection

ab cd efg

Intersections between Active Segments
● When the sweep line reaches

an intersection (a&e)

ab cd efg

Intersections between Active Segments
● When the sweep line reaches

an intersection (a&e)

d g f b a e c
d g f b e a c

Swap the positions in the
horizontal ordering

And check for intersections
with the new neighbors
(b & e, a & c)

ab cd efg

Intersections between Active Segments
● Sometimes the intersection is in the past…

(y coordinate is above current sweep line position)

● We’ve already processed
this intersection

Do nothing

ab cd

e

Intersections between Active Segments
● Sometimes the intersection is in the future…

(y coordinate is below current sweep line position)

● We may or may not have already
detected this intersection…

It may or may not already be
in the Event Queue

We’ll process it when the
sweep line gets to that position

(just make sure we don’t
add a duplicate!)

ab cd e

g

Outline for Today

● Questions about Homework 1?
Questions about CGAL/Qt installation?

● Motivating Applications for Line Segment Intersection Problem
● Line/Segment Intersection Math
● Naive vs. Output Sensitive Algorithms
● A Plane/Line Sweep Algorithm
● Specific Choices for Data Structures
● Analysis
● Corner Cases / Degeneracies
● Next Time

Data / Data Structures maintained during Sweep
● What data structure do we use for the

vertically-ordered Event Queue?
● Is it an array?
● Is it a linked list?
● Is it a priority queue?
● Is it a binary search tree?
● Is it a hash table?

Add segA
Add segB
segA & segB intersect
Remove segB
Add segC
segA & segC intersect
Remove segA
Remove segC

Data / Data Structures maintained during Sweep
● What data structure do we use for the

vertically-ordered Event Queue?
● Is it an array?
● Is it a linked list?
● Is it a priority queue?
● Is it a binary search tree?
● Is it a hash table?

● We start with a vertically-sorted
collection of all of the end points

● We remove events one at a time in order
● We insert intersection points as they are detected,

one at a time, not necessarily in a particular order
● We need to check for existence before adding a duplicate

Add segA
Add segB
segA & segB intersect
Remove segB
Add segC
segA & segC intersect
Remove segA
Remove segC

Data / Data Structures maintained during Sweep
● What data structure do we use for the

horizontally-ordered Active Segment
Status Structure?

● Is it an array?
● Is it a linked list?
● Is it a priority queue?
● Is it a binary search tree?
● Is it a hash table?

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 2

Data / Data Structures maintained during Sweep
● What data structure do we use for the

horizontally-ordered Active Segment
Status Structure?

● Is it an array?
● Is it a linked list?
● Is it a priority queue?
● Is it a binary search tree?
● Is it a hash table?

● Initially empty
● Segments are added, removed,

and swapped
● Adjacent neighbors are queried often

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 2

Outline for Today

● Questions about Homework 1?
Questions about CGAL/Qt installation?

● Motivating Applications for Line Segment Intersection Problem
● Line/Segment Intersection Math
● Naive vs. Output Sensitive Algorithms
● A Plane/Line Sweep Algorithm
● Specific Choices for Data Structures
● Analysis
● Corner Cases / Degeneracies
● Next Time

Analysis - Running Time
● For n = # of input segments,

k = # of output intersections
s = max # of items items on sweep line / in status structure at one time

● Step 1: Create add segment and remove segment events,
sort and initialize the Event Queue

● Step 2: For each entry in the Event Queue
● Update the Active Segment Status Structure
● Compute intersections between newly adjacent segments
● Add new intersections to the Event Queue

● Overall:

Analysis - Running Time
● For n = # of input segments,

k = # of output intersections → k ≤ n(n-1)/2
s = max # of items items on sweep line / in status structure at one time → s ≤ n

● Step 1: Create add segment and remove segment events,
sort and initialize the Event Queue → O(n log n)

● Step 2: For each entry in the Event Queue → O(n + k)
● Update the Active Segment Status Structure → O(log s)
● Compute intersections between newly adjacent segments → O(1)
● Add new intersections to the Event Queue

→ O(log (n+k)) → O(log (n+n2)) → O(2 * log n) → O(log n)

● Overall: O(n * log n + (n+k)*(log n)) → O((k+n) * log n)
● Algorithm & result has been improved… lower bound is: Ω(n log n + k)

Analysis - Storage / Memory
● For n = # of input segments,

k = # of output intersections → k ≤ n(n-1)/2
s = max # of items items on sweep line / in status structure at one time → s ≤ n

● Step 1: Create add segment and remove segment events,
sort and initialize the Event Queue

● Step 2: For each entry in the Event Queue
Update the Active Segment Status Structure

● Overall:

Analysis - Storage / Memory
● For n = # of input segments,

k = # of output intersections → k ≤ n(n-1)/2
s = max # of items items on sweep line / in status structure at one time → s ≤ n

● Step 1: Create add segment and remove segment events,
sort and initialize the Event Queue
→ “in place” sorting algorithm, O(1) add’l memory

● Step 2: For each entry in the Event Queue
→ maximum size O(n + k)
● Update the Active Segment Status Structure

→ maximum size, O(s)

● Overall: → O(n + k) extra memory!

Analysis - Storage / Memory
● For n = # of input segments,

k = # of output intersections → k ≤ n(n-1)/2
s = max # of items items on sweep line / in status structure at one time → s ≤ n

● Step 1: Create add segment and remove segment events,
sort and initialize the Event Queue
→ “in place” sorting algorithm, O(1) add’l memory

● Step 2: For each entry in the Event Queue
→ maximum size O(n + k)
● Update the Active Segment Status Structure

→ maximum size, O(s)
● Overall: → O(n + k) extra memory!

● Better: Don’t store “future” intersection of non-adjacent segments
→ O(n) extra memory!

Outline for Today

● Questions about Homework 1?
Questions about CGAL/Qt installation?

● Motivating Applications for Line Segment Intersection Problem
● Line/Segment Intersection Math
● Naive vs. Output Sensitive Algorithms
● A Plane/Line Sweep Algorithm
● Specific Choices for Data Structures
● Analysis
● Corner Cases / Degeneracies
● Next Time

Corner Cases / Degeneracies
● We assumed these situations don’t occur:

Corner Cases / Degeneracies
● We assumed these situations don’t occur:

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 2

Corner Cases / Degeneracies
● We assumed these situations don’t occur:

● 3 or more segments intersect at a point
● Intersection may be at the segment endpoint

(rather than in the middle)
● Segments may be perfectly horizontal

(parallel to sweep line)
● 2 or more simultaneous events

(add segment, remove segment, intersection)
● And general floating point rounding headaches…

● However, these situations can be handled
properly in the algorithm without too much
more fuss… see the textbook for details
Algorithm & analysis are still good & valid

Note: segments touching at endpoints is not a
rare occurrence for this application. Our river &
road polylines are connected at the endpoints!

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 2

Outline for Today

● Questions about Homework 1?
Questions about CGAL/Qt installation?

● Motivating Applications for Line Segment Intersection Problem
● Line/Segment Intersection Math
● Naive vs. Output Sensitive Algorithms
● A Plane/Line Sweep Algorithm
● Specific Choices for Data Structures
● Analysis
● Corner Cases / Degeneracies
● Next Time

Next Time
● Cartography (map

making) is not just
river and road polylines,
it is also
the areas or regions

● How do we describe
and store a region?

● How do we overlay,
intersect, & union
map areas or regions?

https://www.natureconservancy.ca/assets/images/graphics/nat/maps/Forest-regions-map-NCC-1000px-custom.jpg

Next Time
● Complexity of the

intersection of
non-convex polygons…

Computational Geometry: An Introduction
Preparata & Shamos, Springer 1985

