CSCI 4560/6560 Computational Geometry

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Lecture 5: Triangulation, part 2

Outline for Today

• Homework 2 Questions?

- Last Time: Art Gallery Problem & Triangulation
- Improved Triangulation Algorithm
- Definition: Monotone Polygon
- Splitting into Monotone Polygons
- Triangulating a Monotone Polygon
- Analysis of Improved Triangulation Algorithm
- Future Lecture: Additional Triangulation Goals

Homework 2

- Use CGAL's Surface Mesh (Halfedge) data structure
- Input: all edges **Output: all faces** on any boundary

use case

use

- Input: 1 edge on a boundary case 2
 - Output: all faces on that boundary

Homework 2

- Each Halfedge stores:
 - vertex at end of directed edge
 - symmetric halfedge
 - face to left of edge
 - next points to the Halfedge counterclockwise around face on left

Outline for Today

- Homework 2 Questions?
- Last Time: Art Gallery Problem & Triangulation
- Improved Triangulation Algorithm
- Definition: Monotone Polygon
- Splitting into Monotone Polygons
- Triangulating a Monotone Polygon
- Analysis of Improved Triangulation Algorithm
- Future Lecture: Additional Triangulation Goals

Last Time?

- The Art Gallery Problem: Place cameras for 100% coverage of a simple polygon (no interior holes).
- Triangulate, and place cameras on the ~1/3 of the vertices, ensuring every triangle has one vertex with a camera.

Cut the input on a "Diagonal" & Recurse

- Diagonal should connect two non-adjacent vertices on the polygonal boundary.
- Diagonal must not be outside the polygon.
- Diagonal may not cross any edge.
 - Diagonal should not

pass through any

How do we find a Valid Diagonal?

- Start at the leftmost vertex, v
 - NOTE: If two or more vertices have the same x, chose the one with smaller y.
- Find vertices *u* and *w*, adjacent to *v*
- Check if the line *uw* is a valid diagonal.
 - This line does not pass through v.
 - Does it intersect other line segments?
 - Does it pass through any other vertices?
 - Does it lie completely outside of the polygon? (possible if one of the vertices is the rightmost vertex)

How do we find a Valid Diagonal?

- If it does cross another line segment, there must one or more vertices inside the triangle *uvw*.
- Starting at the intersection, walk along the boundary to find those vertices.
- Choose the vertex *v*', furthest from the line segment *uw*
- Draw the diagonal from v to v'

Cut on Diagonal & Recurse Analysis

- What is the worst case running time to triangulate a non-convex, simple polygon with *n* vertices?
- Identify a legal diagonal
 - O(n) in worst case
- Split into two smaller polygons
 - Worst case:
 - $m_1 = 3$ vertices and $m_2 = n-1$ vertices
- Overall: O(n²) running time

Outline for Today

- Homework 2 Questions?
- Last Time: Art Gallery Problem & Triangulation
- Improved Triangulation Algorithm
- Definition: Monotone Polygon
- Splitting into Monotone Polygons
- Triangulating a Monotone Polygon
- Analysis of Improved Triangulation Algorithm
- Future Lecture: Additional Triangulation Goals

A Convex Polygon is easy to Triangulate

A Convex Polygon is easy to Triangulate

 Pick any vertex and connect it to every other vertex (except 2 adjacent vertices

 Unfortunately, breaking a non-convex polygon into convex polygons is not easy.

Definition: Monotone with Respect to Y-Axis

• The intersection of the polygon with any line perpendicular to the y-axis is connected.

- The intersection is either
 - empty (above or below the polygon),
 - one point (top or bottom vertex), or
 - a line segment.

Not Monotone, with Respect to Y-Axis

 The intersection of the polygon with any line perpendicular to the y-axis is connected.

- The intersection is either
 - empty (above or below the polygon),
 - one point (top or bottom vertex), or
 - a line segment.

If a Polygon is Monotone...

 We can start from the top vertex (largest y coordinate), and walk "down" the left side to the bottom vertex (smallest y coordinate)

Each step moves downwards or horizontally – *never upwards.*

• Similarly we can walk down the right side of the polygon.

This Polygon is not Monotone...

The left side of this polygon
 does not monotonically decrease

• We'll need to break this polygon into pieces...

At vertex v – a "turn vertex"!

Outline for Today

- Homework 2 Questions?
- Last Time: Art Gallery Problem & Triangulation
- Improved Triangulation Algorithm
- Definition: Monotone Polygon
- Splitting into Monotone Polygons
- Triangulating a Monotone Polygon
- Analysis of Improved Triangulation Algorithm
- Future Lecture: Additional Triangulation Goals

Identify Vertex Types

de Berg, Cheong, van Kreveld and Overmars, Chapter 3

Identify Vertex Types

- = end vertex
- = regular vertex
- = split vertex
- = merge vertex

Identify Vertex Types

 Direction (up or down) of adjacent edges

 Interior angle at vertex (> 180° or < 180°)

- = start vertex
- = end vertex
- = regular vertex
- = split vertex
- = merge vertex

DEGENERACY NOTE "Break Ties" consistently

- p is "below" q if $p_y < q_y$ or $p_y = q_y$ and $p_x > q_x$
- p is "above" q if $p_y > q_y$ or $p_y = q_y$ and $p_x < q_x$

Lemma 3.4: A polygon is *y*-monotone if it has no split vertices or merge vertices.

A connected shape that crosses a horizontal sweep line at ≥3 points must either have a split vertex or a merge vertex!

de Berg, Cheong, van Kreveld and Overmars, Chapter 3

Eliminate Merge & Split Vertices

 In some cases you might be able to neatly pair each merge vertex with a split vertex....

- But what if
 # merge vertices ≠ # split vertices?

 Can multiple merge vertices
 connect to the same
 split vertex?
 - (or vice versa)

Eliminate Merge & Split Vertices

 In some cases you might be able to neatly pair each merge vertex with a split vertex....

- What if there are no split vertices?
- What should the other end of the diagonal be?

Eliminate Merge & Split Vertices

 In some cases you might be able to neatly match each merge vertex with a split vertex....

- What if the diagonals intersect the original polygon?
 What if the diagonals intersect
- each other?

How do we decide what to connect them to?

- Perform line sweep from top to bottom
- When we find split vertex v_i, connect it to a vertex above us...
- Which vertex?

How do we decide what to connect them to?

- Perform line sweep from top to bottom
- When we find split vertex v_i, connect it to a vertex above us...
- Which vertex?
- Find line to left, e_j, and to right, e_k, of v_i on the current sweep line.
- Locate the lowest point between these two lines (a merge vertex)
- If none, take the upper end point of edge e_i or edge e_k

How do we decide what to connect them to?

- Perform line sweep from top to bottom
- When we find split vertex v_i, connect it to a vertex above us...
- Which vertex?
- Find line to left, e_j, and to right, e_k, of v_i on the current sweep line.
- Locate the lowest point between these two lines (a merge vertex)
- If none, take the upper end point of edge e_i or edge e_k

Outline for Today

- Homework 2 Questions?
- Last Time: Art Gallery Problem & Triangulation
- Improved Triangulation Algorithm
- Definition: Monotone Polygon
- Splitting into Monotone Polygons
- Triangulating a Monotone Polygon
- Analysis of Improved Triangulation Algorithm
- Future Lecture: Additional Triangulation Goals

Triangulate a Monotone Polygon?

 Can we always just draw a zig zag down the middle of a monotone polygon?

 Unfortunately no, it's a little more complicated

Frank Staals, http://www.cs.uu.nl/docs/vakken/ga/2021/

- Sort all of the points vertically
- Push top two points onto a *stack data structure*
- Process the remaining points, one at a time, from top to bottom
- If you can...
 - make a triangle with the new point and the last two points on the stack
 - & remove 1 point
 - & repeat
- If not, push the new point on the stack

Frank Staals, http://www.cs.uu.nl/docs/vakken/ga/2021/

- Vertices that have been finished
- Triangles that have already been added
- Vertices currently on the stack form an "upside down funnel" on one side (e.g., right side)

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3

- Vertices that have been finished
- Triangles that have already been added
- Vertices currently on the stack form an "upside down funnel" on one side (e.g., right side)
- The next vertex below us will:
 - Be from the (left) side and create a "fan", Leaving only 2 vertices on the stack

- Vertices that have been finished
- Triangles that have already been added
- Vertices currently on the stack form an "upside down funnel" on one side (e.g., right side)
- The next vertex below us will:
 - Be from the (left) side and create a "fan", Leaving only 2 vertices on the stack
 - Be on the (right) side and:
 - Bend the funnel further from vertical axis

- Vertices that have been finished
- Triangles that have already been added
- Vertices currently on the stack form an "upside down funnel" on one side (e.g., right side)
- The next vertex below us will:
 - Be from the (left) side and create a "fan", Leaving only 2 vertices on the stack
 - Be on the (right) side and:
 - Bend the funnel further from vertical axis
 - Form one or more triangles

Outline for Today

- Homework 2 Questions?
- Last Time: Art Gallery Problem & Triangulation
- Improved Triangulation Algorithm
- Definition: Monotone Polygon
- Splitting into Monotone Polygons
- Triangulating a Monotone Polygon
- Analysis of Improved Triangulation Algorithm
- Future Lecture: Additional Triangulation Goals

Analysis?

• Line sweep algorithm: cut into monotone polygons

• Use stack to triangulate monotone polygon

Analysis?

- Line sweep algorithm: cut into monotone polygons
 - Sort all vertices vertically -
 - Maintain horizontal sorting of active vertices -
 - Locate "helper" vertex for each split/merge -
 - $\bullet \rightarrow$
- Use stack to triangulate monotone polygon
 - Don't need to sort (just walk boundary)
 - Each vertex is added once -
 - Each vertex (beyond first two) adds one triangle when it is removed from stack -
 - \rightarrow

triangles split off

Analysis?

- Line sweep algorithm: cut into monotone polygons
 - Sort all vertices vertically O(n log n)
 - Maintain horizontal sorting of active vertices O(log n)
 - Locate "helper" vertex for each split/merge O(log n)
 - \rightarrow O(n log n)
- Use stack to triangulate monotone polygon
 - Don't need to sort (just walk boundary)
 - Each vertex is added once O(1)
 - Each vertex (beyond first two) adds one triangle when it is removed from stack - O(1)
 - \rightarrow O(n)
- Overall → O(n log n) Better than O(n²) algorithm from previous lecture!

Also Works for Non-Simple Polygons (w/ interior holes)

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3

And it also works for Arbitrary Planar Subdivisions

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3

Outline for Today

- Homework 2 Questions?
- Last Time: Art Gallery Problem & Triangulation
- Improved Triangulation Algorithm
- Definition: Monotone Polygon
- Splitting into Monotone Polygons
- Triangulating a Monotone Polygon
- Analysis of Improved Triangulation Algorithm
- Future Lecture: Additional Triangulation Goals

• The triangulation of a polygon is not unique!

Do we care which triangulation is produced?
Are some triangulations Better for some applications?

• The triangulation of a polygon is not unique!

Do we care which triangulation is produced?
Are some triangulations Better for some applications?

Mueller, Dorsey, McMillan, Jagnow, & Cutler Stable Real-Time Deformations Symposium on Computer Animation 2002

Degenerate/III-conditioned 2D Elements

- a.k.a. how "equilateral" are the *triangles*?
 - Maximize the minimum angle
 - Minimize the maximum angle
 - Maximize the shortest edge
 - Ratio of longest edge to shortest edge
 - Ratio of area to area of circumscribed circle

Degenerate/III-conditioned 3D Elements

- a.k.a. how "equilateral" are the *tetrahedra*?
 - Ratio of volume² to surface area³
 - Smallest solid angle
 - Ratio of volume to volume of smallest circumscribed sphere

Multiple Materials

Mueller, Dorsey, McMillan, Jagnow, & Cutler Stable Real-Time Deformations Symposium on Computer Animation 2002

Next Lecture: Manufacturing by Mold Casting

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 4