CSCI 4560/6560 Computational Geometry

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Lecture 5: Triangulation, part 2

Outline for Today

- Homework 2 Questions?
- Last Time: Art Gallery Problem \& Triangulation
- Improved Triangulation Algorithm
- Definition: Monotone Polygon
- Splitting into Monotone Polygons
- Triangulating a Monotone Polygon
- Analysis of Improved Triangulation Algorithm
- Future Lecture: Additional Triangulation Goals

Homework 2

- Use CGAL's

Surface Mesh
(Halfedge)
data structure

- Input: all edges
- Output: all faces on any boundary

- Input: 1 edge on a boundary
- Output: all faces on that boundary

Homework 2

- Each Halfedge stores:
- vertex at end of directed edge
- symmetric halfedge
- face to left of edge
- next points to the Halfedge counterclockwise around face on left

Image from Justin Legakis

Outline for Today

- Homework 2 Questions?
- Last Time: Art Gallery Problem \& Triangulation
- Improved Triangulation Algorithm
- Definition: Monotone Polygon
- Splitting into Monotone Polygons
- Triangulating a Monotone Polygon
- Analysis of Improved Triangulation Algorithm
- Future Lecture: Additional Triangulation Goals

Last Time?

- The Art Gallery Problem: Place cameras for 100\% coverage of a simple polygon (no interior holes).
- Triangulate, and place cameras on the $\sim 1 / 3$ of the vertices, ensuring every triangle has one vertex with a camera.

Cut the input on a "Diagonal" \& Recurse

- Diagonal should connect two non-adjacent vertices on the polygonal boundary.
- Diagonal must not be outside the polygon.
- Diagonal may not cross any edge.
- Diagonal should not pass through any

other vertex.

How do we find a Valid Diagonal?

- Start at the leftmost vertex, v
- NOTE: If two or more vertices have the same x, chose the one with smaller y.
- Find vertices u and w, adjacent to v
- Check if the line uw is a valid diagonal.
- This line does not pass through v.
- Does it intersect other line segments?
- Does it pass through any other vertices?
- Does it lie completely outside of the polygon? (possible if one of the vertices is the rightmost vertex)

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3

How do we find a Valid Diagonal?

- If it does cross another line segment, there must one or more vertices inside the triangle uvw.
- Starting at the intersection, walk along the boundary to find those vertices.
- Choose the vertex v', furthest from the line segment uw
- Draw the diagonal from v to v^{\prime}

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3

Cut on Diagonal \& Recurse Analysis

- What is the worst case running time to triangulate a non-convex, simple polygon with n vertices?
- Identify a legal diagonal
- O(n) in worst case
- Split into two smaller polygons
- Worst case:

$$
\begin{aligned}
& m_{1}=3 \text { vertices and } \\
& m_{2}=n-1 \text { vertices }
\end{aligned}
$$

- Overall: $O\left(n^{2}\right)$ running time

Outline for Today

- Homework 2 Questions?
- Last Time: Art Gallery Problem \& Triangulation
- Improved Triangulation Algorithm
- Definition: Monotone Polygon
- Splitting into Monotone Polygons
- Triangulating a Monotone Polygon
- Analysis of Improved Triangulation Algorithm
- Future Lecture: Additional Triangulation Goals

A Convex Polygon is easy to Triangulate

A Convex Polygon is easy to Triangulate

- Pick any vertex and connect it to every other vertex (except 2 adjacent vertices
- Unfortunately, breaking a non-convex polygon into convex polygons is not easy.

Definition: Monotone with Respect to Y-Axis

- The intersection of the polygon with any line perpendicular to the y-axis is connected.
- The intersection is either
- empty (above or below the polygon),
- one point (top or bottom vertex), or
- a line segment.

Not Monotone, with Respect to Y-Axis

- The intersection of the polygon with any line perpendicular to the y-axis is connected.
- The intersection is either
- empty (above or below the polygon),
- one point (top or bottom vertex), or
- a line segment.

If a Polygon is Monotone...

- We can start from the top vertex (largest y coordinate), and walk "down" the left side to the bottom vertex (smallest y coordinate)

Each step moves downwards or horizontally - never upwards.

- Similarly we can walk down the right side of the polygon.

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3

This Polygon is not Monotone...

- The left side of this polygon does not monotonically decrease
- We'll need to break this polygon into pieces...
- At vertex v-a "turn vertex"!

Outline for Today

- Homework 2 Questions?
- Last Time: Art Gallery Problem \& Triangulation
- Improved Triangulation Algorithm
- Definition: Monotone Polygon
- Splitting into Monotone Polygons
- Triangulating a Monotone Polygon
- Analysis of Improved Triangulation Algorithm
- Future Lecture: Additional Triangulation Goals

Identify Vertex Types

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3

Identify Vertex Types

$=$ start vertex
= end vertex

- = regular vertex
= split vertex
$\nabla=$ merge vertex

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3

Identify Vertex Types

- Direction (up or down) of adjacent edges
$=$ start vertex
- Interior
angle at
vertex
(> 180° or
$<180^{\circ}$)
- = end vertex
- = regular vertex
$\Delta=$ split vertex
$\nabla=$ merge vertex

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3

DEGENERACY NOTE "Break Ties" consistently

- p is "below" q if $p_{y}<q_{y}$ or $p_{y}=q_{y}$ and $p_{x}>q_{x}$
- p is "above" q if $p_{y}>q_{y}$ or $p_{y}=q_{y}$ and $p_{x}<q_{x}$

Lemma 3.4: A polygon is y-monotone if it has no split vertices or merge vertices.

- start vertex
- end vertex
- = regular vertex
$\Delta=$ split vertex
$\nabla=$ merge vertex

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3

Lemma 3.4: A polygon is y-monotone if it has no split vertices or merge vertices.

A connected shape that crosses a horizontal sweep line at ≥ 3 points must either have a split vertex or a merge vertex!

Eliminate Merge \& Split Vertices

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3

Eliminate Merge \& Soilt Vertices

- In some cases you might be able to neatly pair each merge vertex with a split vertex....
- But how do you match them up to form diagonals?

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3

Eliminate Merge \& Split Vertices

- In some cases you might be able to neatly pair each merge vertex with a split vertex....
- But what if
\# merge vertices $\neq \#$ split vertices?
- Can multiple merge vertices connect to the same
split vertex?
(or vice versa)

Eliminate Merge \& Split Vertices

- In some cases you might be able to neatly pair each merge vertex with a split vertex....
- What if there are no split vertices?
- What should the other end of the diagonal be?

Eliminate Merge \& Split Vertices

- In some cases you might be able to neatly match each merge vertex with a split vertex....
- What if the diagonals intersect the original polygon?
- What if the diagonals intersect each other?
- UGH

Eliminate Merge \& soilt Vertices

- Cut polygon on a diagonal going upwards from every split vertex.
- And downwards from every merge vertex.
- Make sure these diagonals don't intersect the polygon or another diagonal!

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3

Eliminate Merge \& Soilt Vertices

- Cut polygon on a diagonal going upwards from every split vertex.
- And downwards from every merge vertex.
- Make sure these diagonals don't intersect the polygon or another diagonal!
- End result is monotone polygons!

How do we decide what to connect them to?

- Perform line sweep from top to bottom
- When we find split vertex v_{i}, connect it to a vertex above us...
- Which vertex?

How do we decide what to connect them to?

- Perform line sweep from top to bottom
- When we find split vertex v_{i}, connect it to a vertex above us...
- Which vertex?
- Find line to left, e_{j}, and to right, e_{k}, of v_{i} on the current sweep line.
- Locate the lowest point between these two lines (a merge vertex)
- If none, take the upper end point of edge e_{j} or edge e_{k}

How do we decide what to connect them to?

- Perform line sweep from top to bottom
- When we find split vertex v_{i}, connect it to a vertex above us...
- Which vertex?
- Find line to left, e_{j}, and to right, e_{k}, of v_{i} on the current sweep line.
- Locate the lowest point between these two lines (a merge vertex)
- If none, take the upper end point of edge e_{j} or edge e_{k}

Outline for Today

- Homework 2 Questions?
- Last Time: Art Gallery Problem \& Triangulation
- Improved Triangulation Algorithm
- Definition: Monotone Polygon
- Splitting into Monotone Polygons
- Triangulating a Monotone Polygon
- Analysis of Improved Triangulation Algorithm
- Future Lecture: Additional Triangulation Goals

Triangulate a Monotone Polygon?

Triangulate a Monotone Polygon

- Can we always just draw a zig zag down the middle of a monotone polygon?
- Unfortunately no, it's a little more complicated

Triangulate a Monotone Polygon

Frank Staals, http://www.cs.uu.nl/docs/vakken/ga/2021/

Triangulate a Monotone Polygon

- Sort all of the points vertically
- Push top two points onto a stack data structure
- Process the remaining points, one at a time, from top to bottom
- If you can...
- make a triangle with the new point and the last two points on the stack
- \& remove 1 point
- \& repeat
- If not, push the new point on the stack

Triangulate a Monotone Polygon

- Vertices that have been finished
- Triangles that have already been added
- Vertices currently on the stack form an "upside down funnel" on one side (e.g., right side)

Triangulate a Monotone Polygon

- Vertices that have been finished
- Triangles that have already been added
- Vertices currently on the stack form an "upside down funnel" on one side (e.g., right side)
- The next vertex below us will:
- Be from the (left) side and create a "fan", Leaving only 2 vertices on the stack

Triangulate a Monotone Polygon

- Vertices that have been finished
- Triangles that have already been added
- Vertices currently on the stack form an "upside down funnel" on one side (e.g., right side)
- The next vertex below us will:
- Be from the (left) side and create a "fan", Leaving only 2 vertices on the stack
- Be on the (right) side and:
- Bend the funnel further from vertical axis

Triangulate a Monotone Polygon

- Vertices that have been finished
- Triangles that have already been added
- Vertices currently on the stack form an "upside down funnel" on one side (e.g., right side)
- The next vertex below us will:
- Be from the (left) side and create a "fan", Leaving only 2 vertices on the stack
- Be on the (right) side and:
- Bend the funnel further from vertical axis
- Form one or more triangles

Outline for Today

- Homework 2 Questions?
- Last Time: Art Gallery Problem \& Triangulation
- Improved Triangulation Algorithm
- Definition: Monotone Polygon
- Splitting into Monotone Polygons
- Triangulating a Monotone Polygon
- Analysis of Improved Triangulation Algorithm
- Future Lecture: Additional Triangulation Goals

Analysis?

- Line sweep algorithm: cut into monotone polygons

- Use stack to triangulate monotone polygon
- Overall \rightarrow

Analysis?

- Line sweep algorithm: cut into monotone polygons
- Sort all vertices vertically -
- Maintain horizontal sorting of active vertices -
- Locate "helper" vertex for each split/merge -
- \rightarrow

- Use stack to triangulate monotone polygon
- Don't need to sort (just walk boundary)
- Each vertex is added once -
- Each vertex (beyond first two) adds one triangle when it is removed from stack -
- \rightarrow
- Overall \rightarrow

Analysis?

- Line sweep algorithm: cut into monotone polygons
- Sort all vertices vertically - O($n \log n$)
- Maintain horizontal sorting of active vertices - O(log n)
- Locate "helper" vertex for each split/merge - O(log n)
- $\rightarrow \mathrm{O}(n \log n)$

- Use stack to triangulate monotone polygon
- Don't need to sort (just walk boundary)
- Each vertex is added once - O(1)
- Each vertex (beyond first two) adds one triangle when it is removed from stack - O(1)
- $\rightarrow O(n)$
- Overall $\rightarrow O(n \log n)$

Better than $O\left(n^{2}\right)$ algorithm from previous lecture!

Also Works for Non-Simple Polygons

 (w/ interior holes)Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3

And it also works for Arbitrary Planar Subdivisions

Outline for Today

- Homework 2 Questions?
- Last Time: Art Gallery Problem \& Triangulation
- Improved Triangulation Algorithm
- Definition: Monotone Polygon
- Splitting into Monotone Polygons
- Triangulating a Monotone Polygon
- Analysis of Improved Triangulation Algorithm
- Future Lecture: Additional Triangulation Goals

Element Quality and Deformation Simulation

- The triangulation of a polygon is not unique!

- Do we care which triangulation is produced?
- Are some triangulations Better for some applications?

Element Quality and Deformation Simulation

- The triangulation of a polygon is not unique!

- Do we care which triangulation is produced?
- Are some triangulations Better for some applications?

Element Quality and Deformation Simulation

Mueller, Dorsey, McMillan, Jagnow, \& Cutler
Stable Real-Time Deformations
Symposium on Computer Animation 2002

Degenerate/III-conditioned 2D Elements

- a.k.a. how "equilateral" are the triangles?
- Maximize the minimum angle
- Minimize the maximum angle
- Maximize the shortest edge
- Ratio of longest edge to shortest edge
- Ratio of area to area of circumscribed circle

Degenerate/III-conditioned 3D Elements

- a.k.a. how "equilateral" are the tetrahedra?
- Ratio of volume ${ }^{2}$ to surface area ${ }^{3}$
- Smallest solid angle
- Ratio of volume to volume of smallest circumscribed sphere

Element Quality and Deformation Simulation

Multiple Materials

Mueller, Dorsey, McMillan, Jagnow, \& Cutler Stable Real-Time Deformations Symposium on Computer Animation 2002

$$
-\frac{2}{-2}
$$

Next Lecture: Manufacturing by Mold Casting

