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Outline for Today
● Homework 3 Questions?
● Last Time: Monotone Polygons & 

Improved Triangulation Algorithm
● Motivation: Manufacturing by Mold Casting
● Dual Representation: Planar Constraints
● Half-Plane / Half-Space Intersection
● Incremental Linear Programming
● Related Application: Japanese Wood Joints
● Related Application: Automatic Robotic Part Sorting
● Next Time: Point Location



Homework 3 - CGAL Programming Task
● Compute triangulation of input polygon 

& triangulation of “pockets” outside 
input polygon but inside convex hull

● Compute areas
● Compute changes to 

boundary edges
● Leverage CGAL libraries for 

convex hull & triangulation

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 3



How to Read Software Documentation?
● Read carefully, start at the introduction, 

understand the organization of the documentation
● Understand the expectations of the functions 

(requirements on function arguments, etc)
● CGAL classes have 

● An overview section, which breaks implementation into categories, 
● hyperlinks to related pages (good, but sometimes navigation may be 

confusing)



What is “Bad” about (some) Software Documentation?

How do we write Good Software Documentation?
What can we do to avoid creating more “Bad” Software Documentation?



What is “Bad” about (some) Software Documentation?

How do we write Good Software Documentation?
What can we do to avoid creating more “Bad” Software Documentation?

● Hyperlinks & navigation can be confusing
● Avoid duplicate/redundant information
● Search bar - would be nice to be able to filter by type, etc.
● Functions (overridden) with same name - unclear which one I want
● Documentation assumptions may be unclear to newbies
● Include usage examples for every function  – e.g., cppreference.com
● Include time complexity of the function
● Enumerate all of the exceptions (errors) that can happen
● What do you need to #include to use this function
● Description of all input parameters & output & types
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Definition: Monotone with Respect to Y-Axis
● The intersection of the polygon 

with any line perpendicular to 
the y-axis is connected.

● The intersection is either 
● empty (above or 

below the polygon),
● one point (top or 

bottom vertex), or
● a line segment.



Identify Vertex Types
● Direction (up or down) 

of adjacent edges

● Interior 
angle at 
vertex 
(> 180° or 
< 180°)

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 3



How do we decide what to connect them to?
● Perform line sweep from top to bottom
● When we find split vertex vi, 

connect it to a vertex above us…
● Which vertex?

● Find line to left, ej, and to right, ek, 
of vi on the current sweep line.  

● Locate the lowest point between 
these two lines (a merge vertex) 

● If none, take the upper end point 
of edge ej or edge ek

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 3



Triangulate a Monotone Polygon
● Sort all of the points vertically
● Push top two points onto a stack data structure
● Process the remaining points,

one at a time, from top to bottom
● If you can…

● make a triangle with the new point 
and the last two points on the stack

● & remove 1 point
● & repeat

● If not, push the new point on the stack

Frank Staals, http://www.cs.uu.nl/docs/vakken/ga/2021/
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Motivation: Manufacturing by Mold Casting

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 4



“Rules” for the Mold Casting Problem
● Single piece mold
● Cannot break mold
● Rigid mold 

● not flexible, e.g., silicone
● Polyhedral objects 

● no curved surfaces
● Must remove object using 

translation only, no rotation 
● cannot mold a screw



Motivation: Manufacturing by Mold Casting

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Failure!
Cannot be unmolded 
without breaking mold

Success!



“Designing Effective Step-by-step 
Assembly Instructions” 
Agrawala et al., 
SIGGRAPH 2003

• Inspired by robotics 
planning research

• Need to solve planning 
& presentation 
simultaneously 
for best result



● Given a polyhedron with 
polygonal facets, can it be 
cast from a single mold?

● What is the shape 
of the mold?
● How is the part 

oriented in the mold?
● Which is the top facet?

● What direction is the 
object translated to 
remove it from the mold? Computational Geometry Algorithms and Applications, 

de Berg, Cheong, van Kreveld and Overmars, Chapter 4

“Castable” Problem Statement



Problem Statement
● The translation direction is not necessarily 

perpendicular to the 
top facet of the mold!

● The translation 
direction may 
not be unique
– there may be 
multiple answers!
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Lemma 4.1 The polyhedron P can 
be removed from its mold by a 
translation in direction d 
if and only if d makes an angle of at 
least 90◦ with the outward normal 
of all ordinary facets of P.

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

facet f is 
problematic!



Lemma 4.1 The polyhedron P can 
be removed from its mold by a 
translation in direction d 
if and only if d makes an angle of at 
least 90◦ with the outward normal 
of all ordinary facets of P.

If the piece collides with mold facet      , 
it must have angle > 90◦,  which 
would imply an angle < 90◦ with the 
corresponding piece facet f

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

facet f is 
problematic!



Definition: Dot Product
● A unit vector, n, has length = 1:      sqrt(nx

2 + ny
2 + nz

2) = 1

● The dot product of two unit vectors, d and n, is:       dx*nx + dy*ny + dz*nz

n = (nx,ny,nz)

d = (dx,dy,dz)

n = (nx,ny,nz)

n = (nx,ny,nz)

Dot product = 1 
When d and n are parallel 

in the same direction

Dot product = 0 
When d and n are 

perpendicular (90°)

Dot product = -1 
When d and n are parallel in 

the opposite directions

d = (dx,dy,dz) d = (dx,dy,dz)



Lemma 4.1 The polyhedron P can 
be removed from its mold by a 
translation in direction d 
if and only if d makes an angle of at 
least 90◦ with the outward normal 
of all ordinary facets of P.

Note:  It will NOT be necessarily to 
change direction during unmolding.  If 
the object can be removed from the 
mold, a single direction is sufficient.

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 4



“Dual” Representation
● Every upwards direction d = (dx,dy,dz) 

can be represented as a point 
on the z=1 plane:  d = (dx,dy,1) 

● Not a unit vector, that’s ok
● We convert our 3D problem to 2D

● All valid solutions to the 
unmolding problem form 
a region on the plane.

Computational Geometry 
Algorithms and Applications, 

de Berg, Cheong, van Kreveld 
and Overmars, Chapter 4
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● Each facet places a linear constraint 
on the valid unmolding directions

          nxdx + nydy + nz ≤ 0

● This half-plane / half-space space can be 
visualized on our dual representation z=1 



● That region is the intersection of the linear 
constraints from each face of the piece.

● That region is convex!



Half Space Intersection

finite bounded region
unbounded region

degenerate case: 
intersect at a single point infeasible, empty, 

no solution

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 4



Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Is it Castable? Algorithm
● Given an input polyhedron 

with n facets
● Try each facet as the “top” facet

● Intersect the half-spaces 
of all other facets

● If it is non-empty, we have 
a solution!



Compute Halfspace Intersection
● Given n linear constraints (n halfspaces)
● Intersection will be a convex region 

in the z=1 plane with at most n edges

● Let’s compute intersection 
via Divide & Conquer:
● Split half spaces into two groups
● Compute intersection
● Merge intersections Computational Geometry Algorithms and Applications, 

de Berg, Cheong, van Kreveld and Overmars, Chapter 4



Merge Two Convex Regions
● From previous lecture, we can 

compute the intersection/overlay 
general (non-convex) polygonal 
shapes in  O(n log n + k log n)
● k is the complexity, 

# of faces on output polygon 
● In this case k ≤ n

● Potential Complication?
The shapes may be unbounded

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 4



Plane Sweep to Compute Overlay

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

● Worst case sweep line 
horizontal complexity is 
constant, not n
because shapes are convex

● Track left & right faces 
of each shape C1 & C2

● We can handle 
unbounded shapes by 
setting one or more 
of these edges to NULL



Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Is it Castable? Algorithm Analysis
● Given an input polyhedron with n facets
● Try each facet as the “top” facet  

 
● Intersect the half-spaces 

of all other facets
● Merge 2 convex regions 

 
● Divide & Conquer Recursion 

 
● If it is non-empty, we have a solution!
● Overall: 



Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Is it Castable? Algorithm Analysis
● Given an input polyhedron with n facets
● Try each facet as the “top” facet  

→ O(n)
● Intersect the half-spaces 

of all other facets
● Merge 2 convex regions 

→ O(n)
● Divide & Conquer Recursion 

→ O(n log n)
● If it is non-empty, we have a solution!
● Overall: 



Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Is it Castable? Algorithm Analysis
● Given an input polyhedron with n facets
● Try each facet as the “top” facet  

→ O(n)
● Intersect the half-spaces 

of all other facets
● Merge 2 convex regions 

→ O(n)
● Divide & Conquer Recursion 

→ O(n log n)
● If it is non-empty, we have a solution!
● Overall: → O(n2 log n)

Can we do better?



Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Is it Castable? Algorithm Analysis
● Given an input polyhedron with n facets
● Try each facet as the “top” facet  

→ O(n)
● Intersect the half-spaces 

of all other facets
● Merge 2 convex regions 

→ O(n)
● Divide & Conquer Recursion 

→ O(n log n)
● If it is non-empty, we have a solution!
● Overall: → O(n2 log n)

Can we do better?

We don’t need 
every solution…  

(the exact polygon of all 
valid removal angles)

we only need 1 solution!
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Linear Optimization, a.k.a. Linear Programming

objective function

constraints

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 4



Linear Programming - Incremental Solution
● Order the half-space constraints in some order: h1, h2, h3, … hn
● We will solve incremental versions of the problem: C1, C2, C3, … Cn
● Which have optimal solutions: 

v1, v2, v3, … vn

● Ci has with half-space constraints 
{ h1, h2, h3, … hi } with solution vi

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 4



Linear Programming - Incremental Solution
● At each step, we will add in the next halfspace constraint hi+1

Infeasible - no solution Satisfied: v1 = vi+1 Satisfied: compute new vi+1

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 4



Computing New Solution vi+1

● It must lie on the constraint hi+1
● Must intersect with all previous 

halfspaces

● Note: We are not computing 
or storing the feasible region, 
only the solution point vi

● What is the running time?

Satisfied: compute new vi+1



Incremental Solution - Analysis
Infeasible - no solution Satisfied: v1 = vi+1 Satisfied: compute new vi+1



Incremental Solution - Analysis
Infeasible - no solution Satisfied: v1 = vi+1 Satisfied: compute new vi+1

→ O(1) 
short circuit exit!

→ O(1) → O(n)



Incremental Solution - Analysis
● Order the half-space constraints in some order: h1, h2, h3, … hn
● We will solve incremental versions of the problem: C1, C2, C3, … Cn

● Which have optimal solutions: 
v1, v2, v3, … vn

● Ci has with half-space constraints 
{ h1, h2, h3, … hi } with solution vi



Incremental Solution - Analysis
● Order the half-space constraints in some order: h1, h2, h3, … hn
● We will solve incremental versions of the problem: C1, C2, C3, … Cn

● Which have optimal solutions: 
v1, v2, v3, … vn

● Ci has with half-space constraints 
{ h1, h2, h3, … hi } with solution vi

Overall:  
→ O(n2) worst case

 → O(n) 

Computational Geometry Algorithms and Applications,  de Berg, Cheong, van Kreveld and Overmars, Chapter 4



Incremental Solution - Analysis
● Order the half-space constraints in some order: h1, h2, h3, … hn
● We will solve incremental versions of the problem: C1, C2, C3, … Cn

● Which have optimal solutions: 
v1, v2, v3, … vn

● Ci has with half-space constraints 
{ h1, h2, h3, … hi } with solution vi

Overall:  
→ O(n2) worst case

 → O(n) 

Ach!  This is worse!
This makes our mold casting 

problem O(n3)!



Randomized Linear Programming
● Order the half-space constraints in RANDOMLY: h1, h2, h3, … hn
● We will solve incremental versions of the problem: C1, C2, C3, … Cn

● Which have optimal solutions: 
v1, v2, v3, … vn

● Ci has with half-space constraints 
{ h1, h2, h3, … hi } with solution vi

Overall:  
→ O(n) expected case

 → O(n) 

→ O(1) 
short circuit 

exit!

→ O(1) → O(n)

randomize the order 
of the halfspaces

Can be shown that the case to 
recompute the solution is rare…



Incremental Linear Programming
● Best case halfspace ordering for construction → O(n)

every additional halfspace is satisfied by the current solution

● Worst case halfspace ordering for construction → O(n2)
every additional halfspace requires the solution be updated

● What about on average?
Are we asking about the “average case halfspace ordering”?
Or is it the average of running time across every possible halfspace ordering?



Incremental Linear Programming
● Best case halfspace ordering for construction → O(n)

every additional halfspace is satisfied by the current solution

● Worst case halfspace ordering for construction → O(n2)
every additional halfspace requires the solution be updated

● What about on average?
Are we asking about the “average case halfspace ordering”?
Or is it the average of running time across every possible halfspace ordering?

● Of all the possible orderings, how many of them are worst case? 
In this computation…  Very few! 

Randomization is a powerful algorithm technique we will see 
multiple times this term!  In fact, we’ll talk about it more in Lecture 7!



Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Is it Castable? Algorithm Summary
● Given an input polyhedron with n facets
● Try each facet as the “top” facet  

→ O(n)

● Intersect the half-spaces of all other facets
● Divide & Conquer convex polygon intersection

→ O(n log n) OVERALL: O(n2 log n)      
● Worst case Incremental Linear Programming

→ O(n2) OVERALL: O(n3)
● Randomized Linear Programming

→ O(n) expected OVERALL: O(n2) expected
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The Art of 
Traditional Japanese 

Wood Joinery
Dylan Iwakuni

https://www.youtube.com/watch?
v=3KqIIOyuo1Q&t=17s



MECH DRAFTING      Vasileios I. Koutsovoulos

https://mechdrafting.net/en/portfolio-item/japanese-joinery



18 Piece Burr
Bill Cutler PuzzlesJustin Legakis ~1999

http://legakis.net/justin/gallery_burr.htmlhttp://billcutlerpuzzles.com/stock/18piece.html

https://docs.google.com/file/d/12zY-Q98OQo0lDNi0leACktZYGKRNVs-9/preview


Japanese 
Joinery -
Kane Tsugi

https://www.youtube.com/watch?v=P-ODWGUfBEM

Dylan 
Iwakuni

http://www.youtube.com/watch?v=P-ODWGUfBEM




Mysterious 
Japanese 
Joinery

https://www.youtube.com/watch?v=GtdQoT7saz0

Dylan 
Iwakuni

http://www.youtube.com/watch?v=GtdQoT7saz0
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Robotics:
Automatic 
Part 
Sorting & 
Orienting

"Design of Part Feeding and Assembly Processes with Dynamics", 
Song,Trinkle, Kumar, & Pang, MEAM 2004.



“Using Simulation for Planning 
and Design of Robotic Systems 

with Intermittent Contact”, 
Stephen Berard, 
RPI PhD 2009.

Robotics:
Automatic 
Part 
Sorting & 
Orienting
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