
CSCI 4560/6560 Computational Geometry
https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Lecture 6:
Half-Space Intersections

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Outline for Today
● Homework 3 Questions?
● Last Time: Monotone Polygons &

Improved Triangulation Algorithm
● Motivation: Manufacturing by Mold Casting
● Dual Representation: Planar Constraints
● Half-Plane / Half-Space Intersection
● Incremental Linear Programming
● Related Application: Japanese Wood Joints
● Related Application: Automatic Robotic Part Sorting
● Next Time: Point Location

Homework 3 - CGAL Programming Task
● Compute triangulation of input polygon

& triangulation of “pockets” outside
input polygon but inside convex hull

● Compute areas
● Compute changes to

boundary edges
● Leverage CGAL libraries for

convex hull & triangulation

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 3

How to Read Software Documentation?
● Read carefully, start at the introduction,

understand the organization of the documentation
● Understand the expectations of the functions

(requirements on function arguments, etc)
● CGAL classes have

● An overview section, which breaks implementation into categories,
● hyperlinks to related pages (good, but sometimes navigation may be

confusing)

What is “Bad” about (some) Software Documentation?

How do we write Good Software Documentation?
What can we do to avoid creating more “Bad” Software Documentation?

What is “Bad” about (some) Software Documentation?

How do we write Good Software Documentation?
What can we do to avoid creating more “Bad” Software Documentation?

● Hyperlinks & navigation can be confusing
● Avoid duplicate/redundant information
● Search bar - would be nice to be able to filter by type, etc.
● Functions (overridden) with same name - unclear which one I want
● Documentation assumptions may be unclear to newbies
● Include usage examples for every function – e.g., cppreference.com
● Include time complexity of the function
● Enumerate all of the exceptions (errors) that can happen
● What do you need to #include to use this function
● Description of all input parameters & output & types

Outline for Today
● Homework 3 Questions?
● Last Time: Monotone Polygons &

Improved Triangulation Algorithm
● Motivation: Manufacturing by Mold Casting
● Dual Representation: Planar Constraints
● Half-Plane / Half-Space Intersection
● Incremental Linear Programming
● Related Application: Japanese Wood Joints
● Related Application: Automatic Robotic Part Sorting
● Next Time: Point Location

Definition: Monotone with Respect to Y-Axis
● The intersection of the polygon

with any line perpendicular to
the y-axis is connected.

● The intersection is either
● empty (above or

below the polygon),
● one point (top or

bottom vertex), or
● a line segment.

Identify Vertex Types
● Direction (up or down)

of adjacent edges

● Interior
angle at
vertex
(> 180° or
< 180°)

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 3

How do we decide what to connect them to?
● Perform line sweep from top to bottom
● When we find split vertex vi,

connect it to a vertex above us…
● Which vertex?

● Find line to left, ej, and to right, ek,
of vi on the current sweep line.

● Locate the lowest point between
these two lines (a merge vertex)

● If none, take the upper end point
of edge ej or edge ek

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 3

Triangulate a Monotone Polygon
● Sort all of the points vertically
● Push top two points onto a stack data structure
● Process the remaining points,

one at a time, from top to bottom
● If you can…

● make a triangle with the new point
and the last two points on the stack

● & remove 1 point
● & repeat

● If not, push the new point on the stack

Frank Staals, http://www.cs.uu.nl/docs/vakken/ga/2021/

Outline for Today
● Homework 3 Questions?
● Last Time: Monotone Polygons &

Improved Triangulation Algorithm
● Motivation: Manufacturing by Mold Casting
● Dual Representation: Planar Constraints
● Half-Plane / Half-Space Intersection
● Incremental Linear Programming
● Related Application: Japanese Wood Joints
● Related Application: Automatic Robotic Part Sorting
● Next Time: Point Location

Motivation: Manufacturing by Mold Casting

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 4

“Rules” for the Mold Casting Problem
● Single piece mold
● Cannot break mold
● Rigid mold

● not flexible, e.g., silicone
● Polyhedral objects

● no curved surfaces
● Must remove object using

translation only, no rotation
● cannot mold a screw

Motivation: Manufacturing by Mold Casting

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Failure!
Cannot be unmolded
without breaking mold

Success!

“Designing Effective Step-by-step
Assembly Instructions”
Agrawala et al.,
SIGGRAPH 2003

• Inspired by robotics
planning research

• Need to solve planning
& presentation
simultaneously
for best result

● Given a polyhedron with
polygonal facets, can it be
cast from a single mold?

● What is the shape
of the mold?
● How is the part

oriented in the mold?
● Which is the top facet?

● What direction is the
object translated to
remove it from the mold? Computational Geometry Algorithms and Applications,

de Berg, Cheong, van Kreveld and Overmars, Chapter 4

“Castable” Problem Statement

Problem Statement
● The translation direction is not necessarily

perpendicular to the
top facet of the mold!

● The translation
direction may
not be unique
– there may be
multiple answers!

Outline for Today
● Homework 3 Questions?
● Last Time: Monotone Polygons &

Improved Triangulation Algorithm
● Motivation: Manufacturing by Mold Casting
● Dual Representation: Planar Constraints
● Half-Plane / Half-Space Intersection
● Incremental Linear Programming
● Related Application: Japanese Wood Joints
● Related Application: Automatic Robotic Part Sorting
● Next Time: Point Location

Lemma 4.1 The polyhedron P can
be removed from its mold by a
translation in direction d
if and only if d makes an angle of at
least 90◦ with the outward normal
of all ordinary facets of P.

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

facet f is
problematic!

Lemma 4.1 The polyhedron P can
be removed from its mold by a
translation in direction d
if and only if d makes an angle of at
least 90◦ with the outward normal
of all ordinary facets of P.

If the piece collides with mold facet ,
it must have angle > 90◦, which
would imply an angle < 90◦ with the
corresponding piece facet f

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

facet f is
problematic!

Definition: Dot Product
● A unit vector, n, has length = 1: sqrt(nx

2 + ny
2 + nz

2) = 1

● The dot product of two unit vectors, d and n, is: dx*nx + dy*ny + dz*nz

n = (nx,ny,nz)

d = (dx,dy,dz)

n = (nx,ny,nz)

n = (nx,ny,nz)

Dot product = 1
When d and n are parallel

in the same direction

Dot product = 0
When d and n are

perpendicular (90°)

Dot product = -1
When d and n are parallel in

the opposite directions

d = (dx,dy,dz) d = (dx,dy,dz)

Lemma 4.1 The polyhedron P can
be removed from its mold by a
translation in direction d
if and only if d makes an angle of at
least 90◦ with the outward normal
of all ordinary facets of P.

Note: It will NOT be necessarily to
change direction during unmolding. If
the object can be removed from the
mold, a single direction is sufficient.

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

“Dual” Representation
● Every upwards direction d = (dx,dy,dz)

can be represented as a point
on the z=1 plane: d = (dx,dy,1)

● Not a unit vector, that’s ok
● We convert our 3D problem to 2D

● All valid solutions to the
unmolding problem form
a region on the plane.

Computational Geometry
Algorithms and Applications,

de Berg, Cheong, van Kreveld
and Overmars, Chapter 4

Outline for Today
● Homework 3 Questions?
● Last Time: Monotone Polygons &

Improved Triangulation Algorithm
● Motivation: Manufacturing by Mold Casting
● Dual Representation: Planar Constraints
● Half-Plane / Half-Space Intersection
● Incremental Linear Programming
● Related Application: Japanese Wood Joints
● Related Application: Automatic Robotic Part Sorting
● Next Time: Point Location

● Each facet places a linear constraint
on the valid unmolding directions

 nxdx + nydy + nz ≤ 0

● This half-plane / half-space space can be
visualized on our dual representation z=1

● That region is the intersection of the linear
constraints from each face of the piece.

● That region is convex!

Half Space Intersection

finite bounded region
unbounded region

degenerate case:
intersect at a single point infeasible, empty,

no solution

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Is it Castable? Algorithm
● Given an input polyhedron

with n facets
● Try each facet as the “top” facet

● Intersect the half-spaces
of all other facets

● If it is non-empty, we have
a solution!

Compute Halfspace Intersection
● Given n linear constraints (n halfspaces)
● Intersection will be a convex region

in the z=1 plane with at most n edges

● Let’s compute intersection
via Divide & Conquer:
● Split half spaces into two groups
● Compute intersection
● Merge intersections Computational Geometry Algorithms and Applications,

de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Merge Two Convex Regions
● From previous lecture, we can

compute the intersection/overlay
general (non-convex) polygonal
shapes in O(n log n + k log n)
● k is the complexity,

of faces on output polygon
● In this case k ≤ n

● Potential Complication?
The shapes may be unbounded

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Plane Sweep to Compute Overlay

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

● Worst case sweep line
horizontal complexity is
constant, not n
because shapes are convex

● Track left & right faces
of each shape C1 & C2

● We can handle
unbounded shapes by
setting one or more
of these edges to NULL

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Is it Castable? Algorithm Analysis
● Given an input polyhedron with n facets
● Try each facet as the “top” facet

● Intersect the half-spaces

of all other facets
● Merge 2 convex regions

● Divide & Conquer Recursion

● If it is non-empty, we have a solution!
● Overall:

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Is it Castable? Algorithm Analysis
● Given an input polyhedron with n facets
● Try each facet as the “top” facet

→ O(n)
● Intersect the half-spaces

of all other facets
● Merge 2 convex regions

→ O(n)
● Divide & Conquer Recursion

→ O(n log n)
● If it is non-empty, we have a solution!
● Overall:

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Is it Castable? Algorithm Analysis
● Given an input polyhedron with n facets
● Try each facet as the “top” facet

→ O(n)
● Intersect the half-spaces

of all other facets
● Merge 2 convex regions

→ O(n)
● Divide & Conquer Recursion

→ O(n log n)
● If it is non-empty, we have a solution!
● Overall: → O(n2 log n)

Can we do better?

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Is it Castable? Algorithm Analysis
● Given an input polyhedron with n facets
● Try each facet as the “top” facet

→ O(n)
● Intersect the half-spaces

of all other facets
● Merge 2 convex regions

→ O(n)
● Divide & Conquer Recursion

→ O(n log n)
● If it is non-empty, we have a solution!
● Overall: → O(n2 log n)

Can we do better?

We don’t need
every solution…

(the exact polygon of all
valid removal angles)

we only need 1 solution!

Outline for Today
● Homework 3 Questions?
● Last Time: Monotone Polygons &

Improved Triangulation Algorithm
● Motivation: Manufacturing by Mold Casting
● Dual Representation: Planar Constraints
● Half-Plane / Half-Space Intersection
● Incremental Linear Programming
● Related Application: Japanese Wood Joints
● Related Application: Automatic Robotic Part Sorting
● Next Time: Point Location

Linear Optimization, a.k.a. Linear Programming

objective function

constraints

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Linear Programming - Incremental Solution
● Order the half-space constraints in some order: h1, h2, h3, … hn
● We will solve incremental versions of the problem: C1, C2, C3, … Cn
● Which have optimal solutions:

v1, v2, v3, … vn

● Ci has with half-space constraints
{ h1, h2, h3, … hi } with solution vi

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Linear Programming - Incremental Solution
● At each step, we will add in the next halfspace constraint hi+1

Infeasible - no solution Satisfied: v1 = vi+1 Satisfied: compute new vi+1

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Computing New Solution vi+1

● It must lie on the constraint hi+1
● Must intersect with all previous

halfspaces

● Note: We are not computing
or storing the feasible region,
only the solution point vi

● What is the running time?

Satisfied: compute new vi+1

Incremental Solution - Analysis
Infeasible - no solution Satisfied: v1 = vi+1 Satisfied: compute new vi+1

Incremental Solution - Analysis
Infeasible - no solution Satisfied: v1 = vi+1 Satisfied: compute new vi+1

→ O(1)
short circuit exit!

→ O(1) → O(n)

Incremental Solution - Analysis
● Order the half-space constraints in some order: h1, h2, h3, … hn
● We will solve incremental versions of the problem: C1, C2, C3, … Cn

● Which have optimal solutions:
v1, v2, v3, … vn

● Ci has with half-space constraints
{ h1, h2, h3, … hi } with solution vi

Incremental Solution - Analysis
● Order the half-space constraints in some order: h1, h2, h3, … hn
● We will solve incremental versions of the problem: C1, C2, C3, … Cn

● Which have optimal solutions:
v1, v2, v3, … vn

● Ci has with half-space constraints
{ h1, h2, h3, … hi } with solution vi

Overall:
→ O(n2) worst case

 → O(n)

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Incremental Solution - Analysis
● Order the half-space constraints in some order: h1, h2, h3, … hn
● We will solve incremental versions of the problem: C1, C2, C3, … Cn

● Which have optimal solutions:
v1, v2, v3, … vn

● Ci has with half-space constraints
{ h1, h2, h3, … hi } with solution vi

Overall:
→ O(n2) worst case

 → O(n)

Ach! This is worse!
This makes our mold casting

problem O(n3)!

Randomized Linear Programming
● Order the half-space constraints in RANDOMLY: h1, h2, h3, … hn
● We will solve incremental versions of the problem: C1, C2, C3, … Cn

● Which have optimal solutions:
v1, v2, v3, … vn

● Ci has with half-space constraints
{ h1, h2, h3, … hi } with solution vi

Overall:
→ O(n) expected case

 → O(n)

→ O(1)
short circuit

exit!

→ O(1) → O(n)

randomize the order
of the halfspaces

Can be shown that the case to
recompute the solution is rare…

Incremental Linear Programming
● Best case halfspace ordering for construction → O(n)

every additional halfspace is satisfied by the current solution

● Worst case halfspace ordering for construction → O(n2)
every additional halfspace requires the solution be updated

● What about on average?
Are we asking about the “average case halfspace ordering”?
Or is it the average of running time across every possible halfspace ordering?

Incremental Linear Programming
● Best case halfspace ordering for construction → O(n)

every additional halfspace is satisfied by the current solution

● Worst case halfspace ordering for construction → O(n2)
every additional halfspace requires the solution be updated

● What about on average?
Are we asking about the “average case halfspace ordering”?
Or is it the average of running time across every possible halfspace ordering?

● Of all the possible orderings, how many of them are worst case?
In this computation… Very few!

Randomization is a powerful algorithm technique we will see
multiple times this term! In fact, we’ll talk about it more in Lecture 7!

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Is it Castable? Algorithm Summary
● Given an input polyhedron with n facets
● Try each facet as the “top” facet

→ O(n)

● Intersect the half-spaces of all other facets
● Divide & Conquer convex polygon intersection

→ O(n log n) OVERALL: O(n2 log n)
● Worst case Incremental Linear Programming

→ O(n2) OVERALL: O(n3)
● Randomized Linear Programming

→ O(n) expected OVERALL: O(n2) expected

Outline for Today
● Homework 3 Questions?
● Last Time: Monotone Polygons &

Improved Triangulation Algorithm
● Motivation: Manufacturing by Mold Casting
● Dual Representation: Planar Constraints
● Half-Plane / Half-Space Intersection
● Incremental Linear Programming
● Related Application: Japanese Wood Joints
● Related Application: Automatic Robotic Part Sorting
● Next Time: Point Location

The Art of
Traditional Japanese

Wood Joinery
Dylan Iwakuni

https://www.youtube.com/watch?
v=3KqIIOyuo1Q&t=17s

MECH DRAFTING Vasileios I. Koutsovoulos

https://mechdrafting.net/en/portfolio-item/japanese-joinery

18 Piece Burr
Bill Cutler PuzzlesJustin Legakis ~1999

http://legakis.net/justin/gallery_burr.htmlhttp://billcutlerpuzzles.com/stock/18piece.html

https://docs.google.com/file/d/12zY-Q98OQo0lDNi0leACktZYGKRNVs-9/preview

Japanese
Joinery -
Kane Tsugi

https://www.youtube.com/watch?v=P-ODWGUfBEM

Dylan
Iwakuni

http://www.youtube.com/watch?v=P-ODWGUfBEM

Mysterious
Japanese
Joinery

https://www.youtube.com/watch?v=GtdQoT7saz0

Dylan
Iwakuni

http://www.youtube.com/watch?v=GtdQoT7saz0

Outline for Today
● Homework 3 Questions?
● Last Time: Monotone Polygons &

Improved Triangulation Algorithm
● Motivation: Manufacturing by Mold Casting
● Dual Representation: Planar Constraints
● Half-Plane / Half-Space Intersection
● Incremental Linear Programming
● Related Application: Japanese Wood Joints
● Related Application: Automatic Robotic Part Sorting
● Next Time: Point Location

Robotics:
Automatic
Part
Sorting &
Orienting

"Design of Part Feeding and Assembly Processes with Dynamics",
Song,Trinkle, Kumar, & Pang, MEAM 2004.

“Using Simulation for Planning
and Design of Robotic Systems

with Intermittent Contact”,
Stephen Berard,
RPI PhD 2009.

Robotics:
Automatic
Part
Sorting &
Orienting

Outline for Today
● Homework 3 Questions?
● Last Time: Monotone Polygons &

Improved Triangulation Algorithm
● Motivation: Manufacturing by Mold Casting
● Dual Representation: Planar Constraints
● Half-Plane / Half-Space Intersection
● Incremental Linear Programming
● Related Application: Japanese Wood Joints
● Related Application: Automatic Robotic Part Sorting
● Next Time: Point Location

