CSCI 4560/6560 Computational Geometry

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Lecture 7: Randomized Incremental Construction

Outline for Today

- Homework...
- Last Time: Half-Space Intersections & Randomized Incremental Construction
- A Sample Quiz Problem?
- Motivation/Application: Smallest Bounding Sphere
 - Collision Detection, Ray Tracing, Robot Placement
- Brute Force Minimal Smallest Bounding Circle
- Bounding Circle by Center of Mass
- Incremental Construction of Smallest Bounding Circle
- Randomized Incremental Construction
- Next Time: Point Location & Orthogonal Range Searching

Homework 1 Grading (still in progress)

- Read the book problem (even more) carefully
- Sometimes necessary to get into the nitty gritty math details
 - "Pseudocode" = similar to code, not just high level comments within code
 - How do you compute the angle between two vectors/lines? Good to know/learn
 - How do you "sort" points in 2D? Increasing dimension can make a problem more expensive, unclear, undefined, or even impossible!
- Sometimes degeneracies can be ignored State your assumptions clearly
- Sometimes degeneracies cannot be ignored:
 - Convex hull does not include points on a boundary edge between 2 other vertices
- Proof Writing: "Proof by contradiction", "Proof by induction", etc.
 - What are you actually trying to prove? Have a clear plan.

Homework 1 Grading (still in progress)

- Try not to stress about the homework score
- Semester grades will be generously curved :)
- Remember that sometimes theory is about figuring out the insight (sometimes it even feels like a "trick") that allows you to contradict an assumption, or simplify/reduce the problem, etc.
 - Try not to stress if you can't figure it out quickly
 - Try not to stress if you can't figure it out on your own
 - Ask for a hint or help if you're stuck

Even expert theorists rely on co-authors/colleagues/reviewers to proofread their proofs and point out typos & counter-examples/bugs

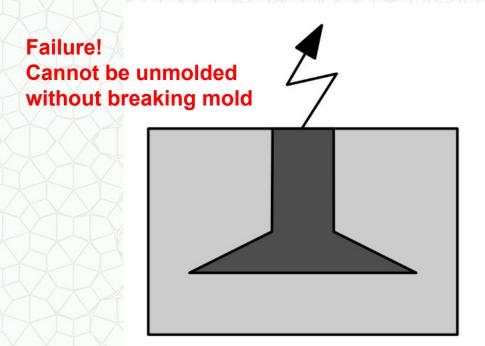
Homework Autograding

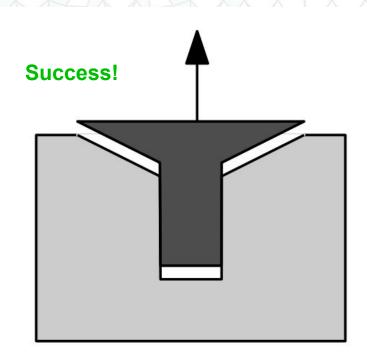
- If it is unclear why you aren't getting full credit, please ask
- Some errors:
 - Specific string keywords/spaces expected
 - Clockwise vs. counter-clockwise winding order
- Qt drawing windows are "blocking"
 - Don't launch before you have written your output files
 Submitty isn't attempting to close these windows,
 your program is just force killed after a 10 second timeout

Outline for Today

- Homework...
- Last Time: Half-Space Intersections & Randomized Incremental Construction
- A Sample Quiz Problem?
- Motivation/Application: Smallest Bounding Sphere
 - Collision Detection, Ray Tracing, Robot Placement
- Brute Force Minimal Smallest Bounding Circle
- Bounding Circle by Center of Mass
- Incremental Construction of Smallest Bounding Circle
- Randomized Incremental Construction
- Next Time: Point Location & Orthogonal Range Searching

Motivation: Manufacturing by Mold Casting



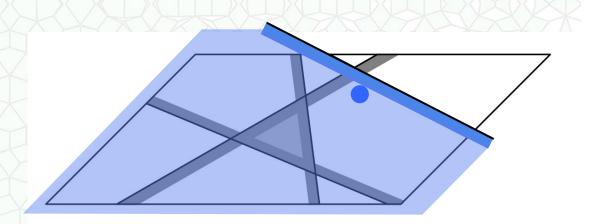


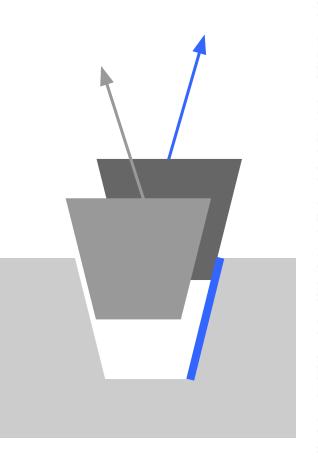
Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 4

 Each facet places a linear constraint on the valid unmolding directions

$$n_x d_x + n_y d_y + n_z \le 0$$

 This half-plane / half-space space can be visualized on our dual representation z=1

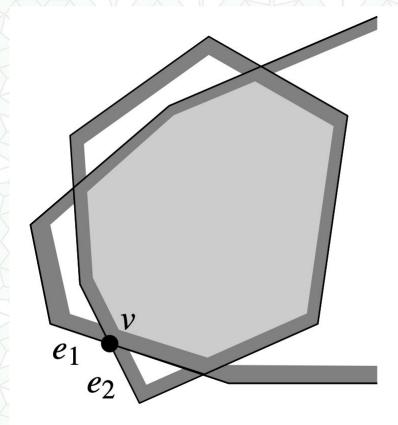




Half Space Intersection

- Compute Feasible Region

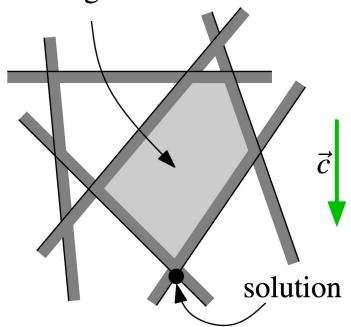
 (a Convex Polygon)
 by Divide & Conquer:
 - Convex Overlay of 2
 Convex Polygons → O(n)
 - Full recursive solution:
 → O(n log n)
- Computing the region is expensive
 & unnecessary if we only need one
 valid point inside the feasible region



Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Linear Optimization, a.k.a. Linear Programming

feasible region



objective function

Maximize
$$c_1x_1 + c_2x_2 + \cdots + c_dx_d$$

Subject to
$$a_{1,1}x_1 + \cdots + a_{1,d}x_d \leq b_1$$

 $a_{2,1}x_1 + \cdots + a_{2,d}x_d \leq b_2$
 \vdots
 $a_{n,1}x_1 + \cdots + a_{n,d}x_d \leq b_n$

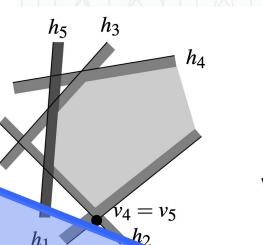
constraints

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 4

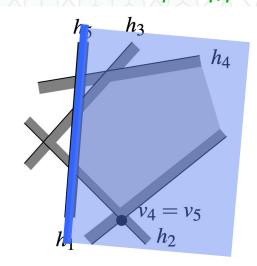
Incremental Solution - Analysis

At each step, we will add in the next halfspace constraint h_{i+1}

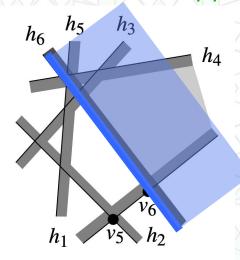
Infeasible - no solution



Satisfied: $v_1 = v_{i+1}$



Compute new v_{i+1}



$$\rightarrow$$
 $O(1)$ short circuit exit!

$$\rightarrow$$
 $O(1)$

$$\rightarrow$$
 $O(n)$

Incremental Solution - Analysis

- Order the half-space constraints in some order: h₁, h₂, h₃, ... h_n
- We will solve incremental versions of the problem: C₁, C₂, C₃, ... C_n

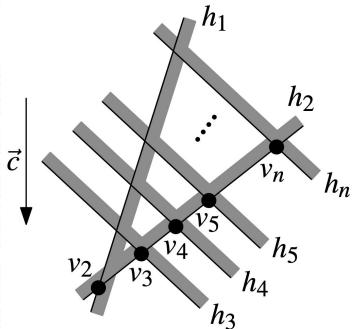
$$\rightarrow$$
 O(n)

Which have optimal solutions:

$$V_1, V_2, V_3, \dots V_n$$

• C_i has with half-space constraints $\{h_1, h_2, h_3, \dots h_i\}$ with solution v_i

Overall: \rightarrow O(n^2) worst case



Randomized Linear Programming

randomize the order of the halfspaces

- Order the half-space constraints in some order: h₁, h₂, h₃, ... h_n
- We will solve incremental versions of the problem: C₁, C₂, C₃, ... C_n

short circuit

exit!

$$\rightarrow$$
 O(n)

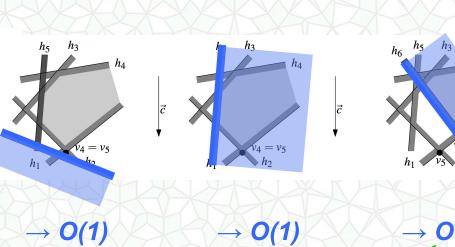
Which have optimal solutions:

$$V_1, V_2, V_3, \dots V_n$$

• C_i has with half-space constraints $\{h_1, h_2, h_3, \dots h_i\}$ with solution v_i

Overall:

→ O(n) expected case



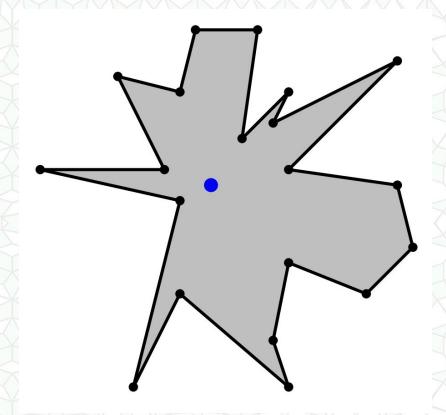
Can be shown that the case to recompute the solution is rare...

Outline for Today

- Homework...
- Last Time: Half-Space Intersections & Randomized Incremental Construction
- A Sample Quiz Problem?
- Motivation/Application: Smallest Bounding Sphere
 - Collision Detection, Ray Tracing, Robot Placement
- Brute Force Minimal Smallest Bounding Circle
- Bounding Circle by Center of Mass
- Incremental Construction of Smallest Bounding Circle
- Randomized Incremental Construction
- Next Time: Point Location & Orthogonal Range Searching

One Guardable Polygons

Problem: Given a simple polygon with n vertices, can we decide efficiently if one guard is enough?



Frank Staals, http://www.cs.uu.nl/docs/vakken/ga/2021/

One Guardable Polygons

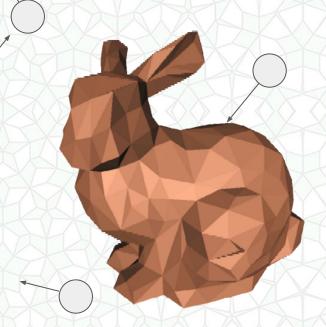
Frank Staals, http://www.cs.uu.nl/docs/vakken/ga/2021/

Outline for Today

- Homework...
- Last Time: Half-Space Intersections & Randomized Incremental Construction
- A Sample Quiz Problem?
- Motivation/Application: Smallest Bounding Sphere
 - Collision Detection, Ray Tracing, Robot Placement
- Brute Force Minimal Smallest Bounding Circle
- Bounding Circle by Center of Mass
- Incremental Construction of Smallest Bounding Circle
- Randomized Incremental Construction
- Next Time: Point Location & Orthogonal Range Searching

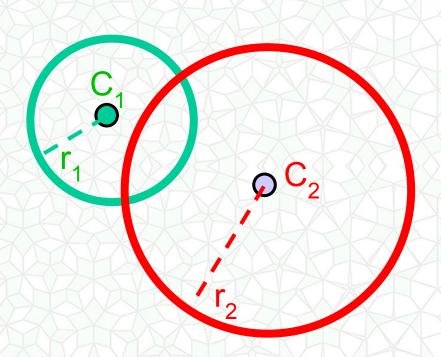
Application: Collision Detection

- Virtual Reality / Video Games
- Robotics
- Scientific Simulations
- Simulation over time
- Detect collisions
- Compute response:
 - Force of impact
 - Damage (deformation or fracture)
 - Bouncing / change of direction



Intersect Two Spheres

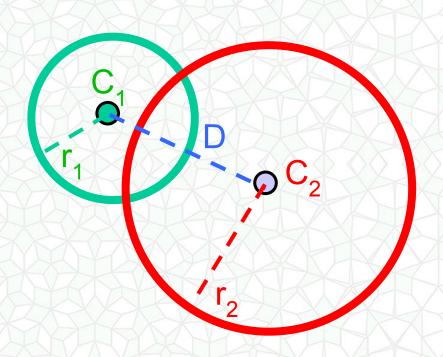
Collision Detection /
 Overlap test between
 two spheres?



Intersect Two Spheres

Collision Detection /
 Overlap test between
 two spheres?

- Compute *D*, the
 distance between centers
- $D(C_1, C_2) < r_1 + r_2$

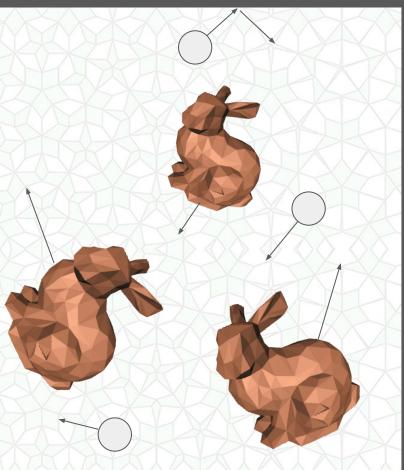


Cost of Collision Detection?

 If we have n bouncing ping pong balls inside of a box (6 quads)?

 If we add a stationary bunny statue (w/ f=60,000 faces) inside the box?

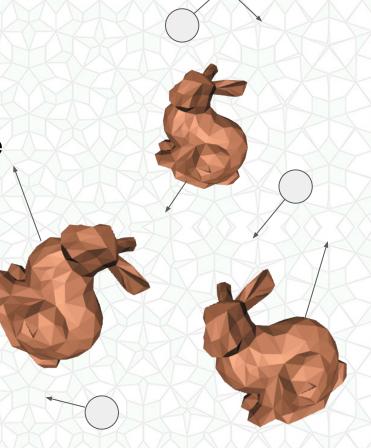
 What if we add b bunny statues bouncing around inside the box?



Naive Collision Detection

 Every frame of animation/simulation, intersect every sphere/triangle in motion with every other sphere/triangle (both stationary and in motion)

$$\rightarrow O((n + b*f + 6)*(n + b*f))$$



Application: Ray Tracing

- Cast g = 1 gazillion rays to simulate photons bouncing off of objects (& through objects!)
- Naive: Intersect every ray with every triangle

Laura Lediaev http://www.omnigraphica.com/classes/cs6620/index.html

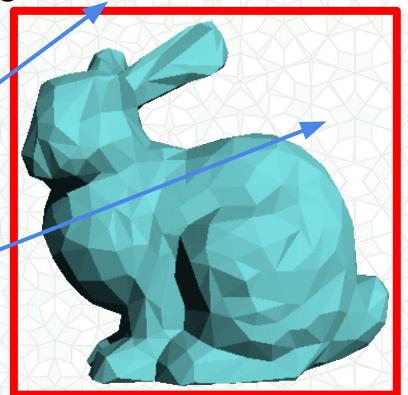
Application: Ray Tracing

- Cast g = 1 gazillion rays to simulate photons bouncing off of objects (& through objects!)
- Naive: Intersect every ray with every triangle

Laura Lediaev http://www.omnigraphica.com/classes/cs6620/index.html

Conservative Bounding Region

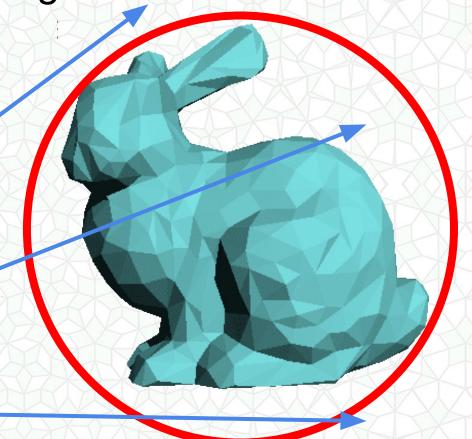
- Check for a ray intersection with a conservative bounding region
- If it doesn't intersect the bounding shape, then we don't need to check against every triangle!

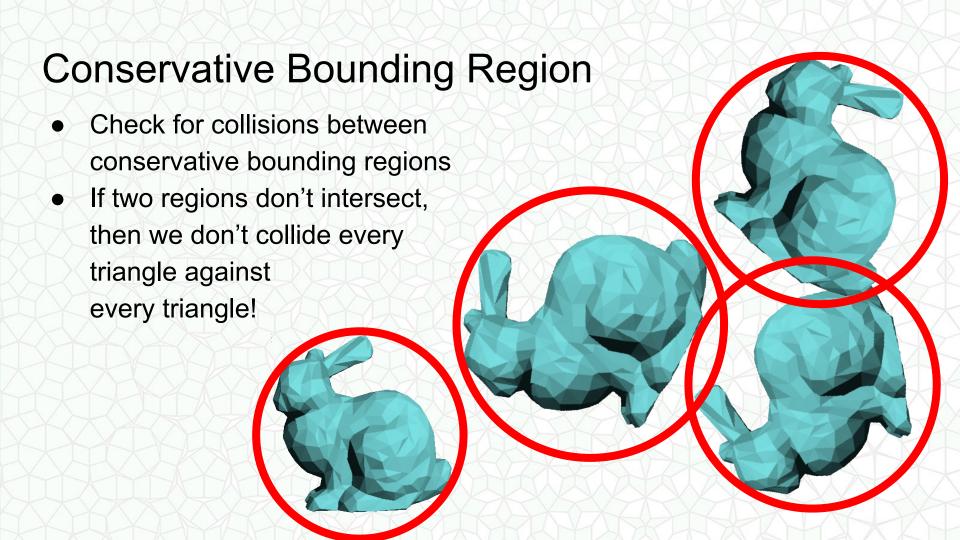


Conservative Bounding Region

 Check for a ray intersection with a conservative bounding region

 If it doesn't intersect the bounding shape, then we don't need to check against every triangle!

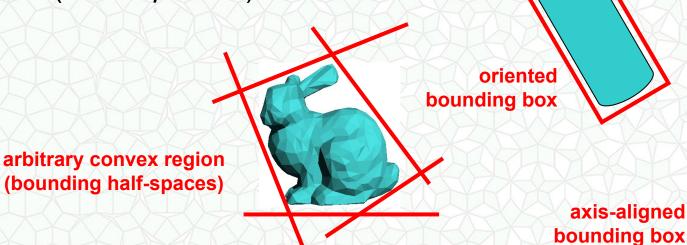




Conservative Bounding Regions

Requirements:

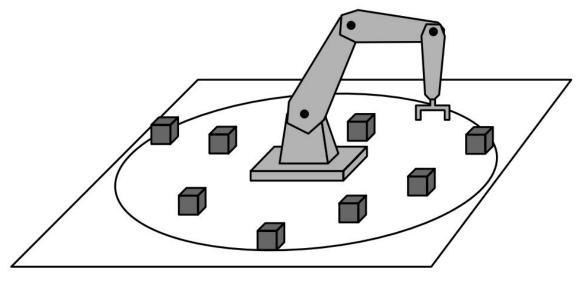
- tight → avoid false positives
- fast to intersect
- easy/fast/perfect construction (less important)



Another Application: Robot Placement

 We need a fixed-base robot to reach a bunch of objects from a set of n a known positions

- What is the smallest robot necessary (minimum arm length)?
- Where should the robot base be located?



Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 4

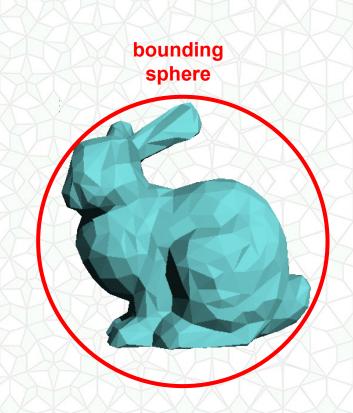
Outline for Today

- Homework...
- Last Time: Half-Space Intersections & Randomized Incremental Construction
- A Sample Quiz Problem?
- Motivation/Application: Smallest Bounding Sphere
 - Collision Detection, Ray Tracing, Robot Placement
- Brute Force Minimal Smallest Bounding Circle
- Bounding Circle by Center of Mass
- Incremental Construction of Smallest Bounding Circle
- Randomized Incremental Construction
- Next Time: Point Location & Orthogonal Range Searching

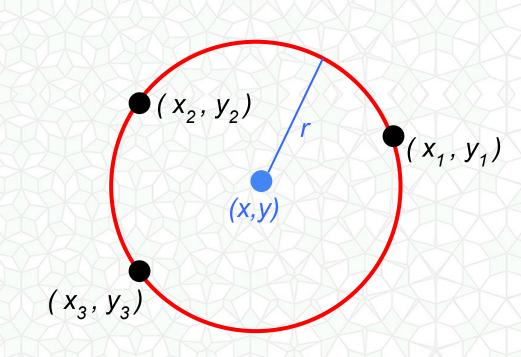
Problem: Minimal Bounding Sphere Circle

- Input: n vertices in 3D 2D
- Assume (for convenience):"General Position"
 - No 3 points are collinear
 - No 4 points lie on the same circle
- Output: 3 of those vertices uniquely define a circle such that all other points lie inside of that circle

Note: In 3D, we would output 4 vertices (4 vertices uniquely define a sphere)



How to Fit a Circle to 3 Points? (not collinear)



How to Fit a Circle to 3 Points? (not collinear)

Points: $(x_1, y_1) (x_2, y_2) (x_3, y_3)$

Solve for center = (x, y) and radius = r

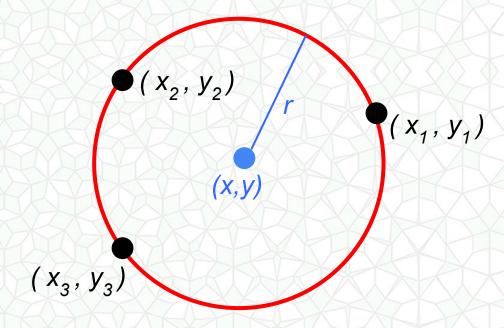
Solve system of equations:

3 equations, 3 unknowns

$$(x_1-x)^2 + (y_1-y)^2 = r^2$$

$$(x_2-x)^2 + (y_2-y)^2 = r^2$$

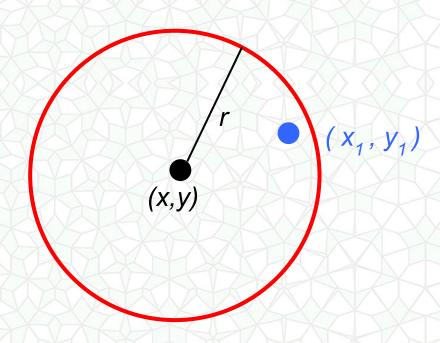
$$(x_3-x)^2 + (y_3-y)^2 = r^2$$



How to Test if Point is Inside/Outside Circle?

Point: (x_1, y_1)

Circle: center = (x, y) and radius = r



How to Test if Point is Inside/Outside Circle?

Point: (x_1, y_1)

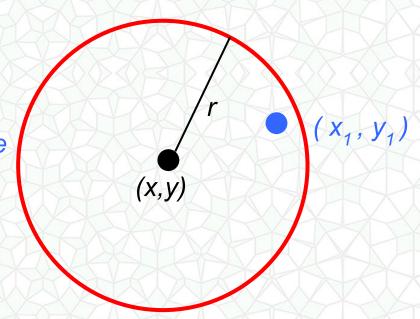
Circle: center = (x, y) and radius = r

Evaluate:

$$(x_1-x)^2 + (y_1-y)^2 > r^2 \rightarrow \text{outside circle}$$

$$(x_1-x)^2 + (y_1-y)^2 = r^2 \rightarrow \text{on edge of circle}$$

$$(x_1-x)^2 + (y_1-y)^2 < r^2 \rightarrow inside circle$$



Brute Force Minimal Bounding Circle

• Input: *n* vertices in 2D

Brute Force Minimal Bounding Circle

- Input: n vertices in 2D
- For every triplet of those points

- Compute circle
- Check against all other points
 - Reject if any are outside circle

Overall Analysis:

Brute Force Minimal Bounding Circle

- Input: n vertices in 2D
- For every triplet of those points

```
\rightarrow " n chose 3 " triplets = n! / (3! * (n-3)!)
= n*(n-1)*(n-2)/6 = O(n^3)
```

- Compute circle \rightarrow O(1)
- Check against all other points

$$\rightarrow O(n)$$

Reject if any are outside circle

Overall Analysis: $\rightarrow O(n^4)$ can we do better?

Outline for Today

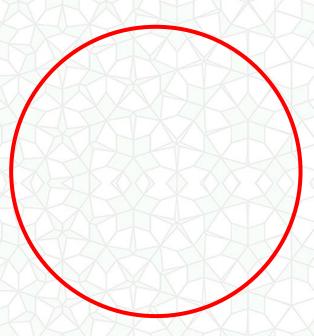
- Homework...
- Last Time: Half-Space Intersections & Randomized Incremental Construction
- A Sample Quiz Problem?
- Motivation/Application: Smallest Bounding Sphere
 - Collision Detection, Ray Tracing, Robot Placement
- Brute Force Minimal Smallest Bounding Circle
- Bounding Circle by Center of Mass
- Incremental Construction of Smallest Bounding Circle
- Randomized Incremental Construction
- Next Time: Point Location & Orthogonal Range Searching

Bounding Circle by Center of Mass

• Let the center = average of all of the vertices

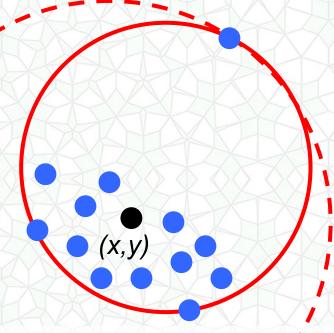
Bounding Circle by Center of Mass

- Let the center = average of all of the vertices
- Find point furthest from center,
 use that to set the radius
- Are all points on or inside this circle?
- Overall running time?
- Is this optimal/tightest circle?



Bounding Circle by Center of Mass

- Let the center = average of all of the vertices
 → O(n)
- Find point furthest from center,
 use that to set the radius
 - \rightarrow O(n)
- Are all points on or inside this circle?
 - → yes!
- Overall running time? → O(n)
- Is this optimal/tightest circle?
 Probably not, maybe only 1 point on circle



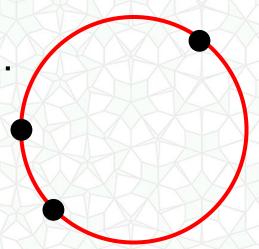
Non-optimal answer is probably ok for graphics applications... but can we do better? Find the optimal/tightest circle?

Outline for Today

- Homework ...
- Last Time: Half-Space Intersections & Randomized Incremental Construction
- A Sample Quiz Problem?
- Motivation/Application: Smallest Bounding Sphere
 - Collision Detection, Ray Tracing, Robot Placement
- Brute Force Minimal Smallest Bounding Circle
- Bounding Circle by Center of Mass
- Incremental Construction of Smallest Bounding Circle
- Randomized Incremental Construction
- Next Time: Point Location & Orthogonal Range Searching

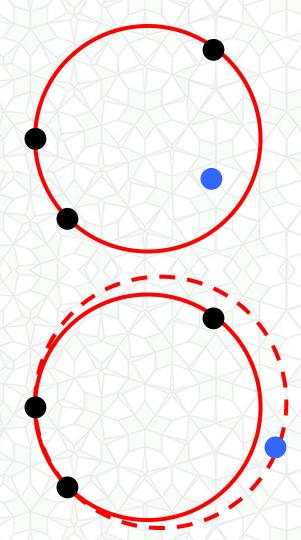
Let's Try Incremental Construction...

- Make a circle with the first 3 points p₁, p₂, p₃
- Loop over all of the remaining points For $i = 4 \dots n$

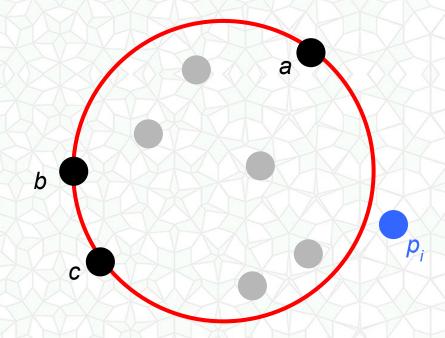


Incremental Construction

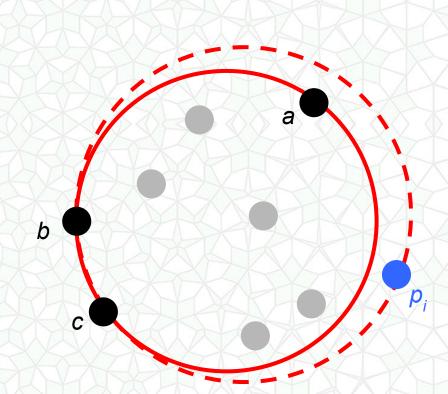
- Make a circle with the first 3 points p₁, p₂, p₃
- Loop over all of the remaining points
 For i = 4 ... n
 - If the p_i is inside the circle, then the solution for points { p₁ → p_{i-1} } is also the solution for points { p₁ → p_i }
 - If p_i is outside the circle, then solve for the new circle
 NOTE: p_i is definitely ON the circle solution for { p₁ → p_i }



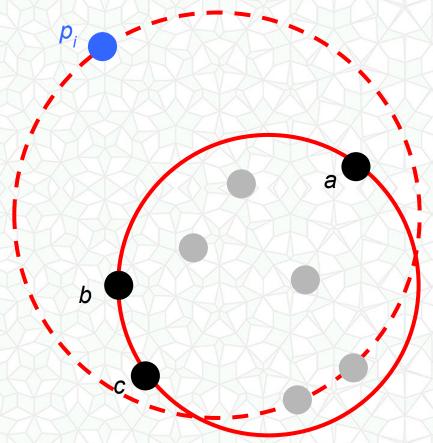
 If the current circle is fit to points a, b, c...



- If the current circle is fit to points a, b, c...
- Can we prove/disprove that adding p_i will be a circle fit to
 - a, b, p, OR
 - b, c, p, OR
 - a, c, p_i

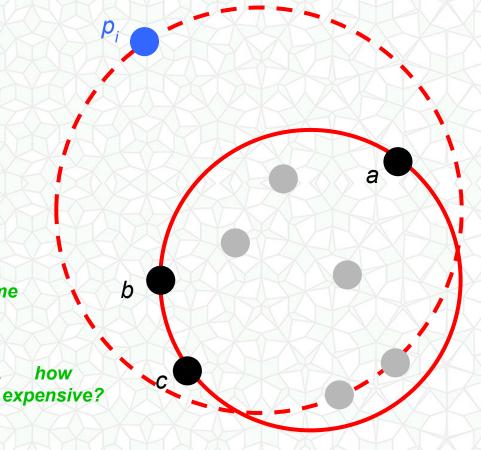


- If the current circle is fit to points *a*, *b*, *c*...
- Can we prove/disprove that adding p_i will be a circle fit to
 - a, b, p, OR
 - a, c, p, OR
 - \bullet b, c, p_i
- Do we need to consider all other points? YES!!!



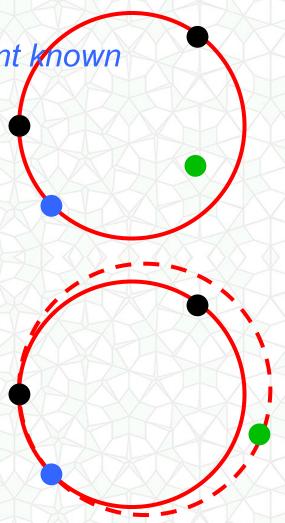
would be

- If the current circle is fit to points a, b, c...
- Can we prove/disprove that adding p_i will be a circle fit to
 - a, b, p, OR
 - a, c, p, OR
 - \bullet b, c, p_i
- Do we need to consider all other points? YES!!!



Incremental Construction with one point known

- Make a circle with the points p_i, p₁, p₂
- Loop over all of the remaining points
 For j = 3 ... i-1
 - If the p_j is inside the circle, then the solution for points { p_i , p₁ → p_{j-1} } is also the solution for points { p_i , p₁ → p_j}
 - If the p_j is outside the circle, then solve for the new circle
 NOTE: p_j is definitely ON the circle solution for { p_i, p₁ → p_i }



Incremental Construction with two points known

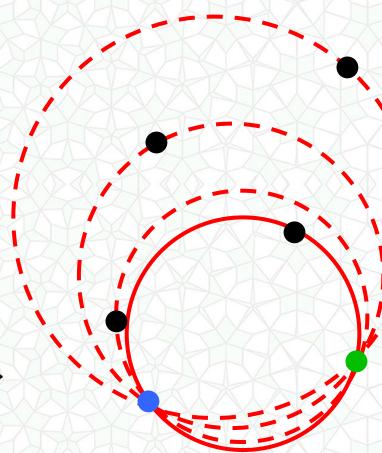
- Make a circle with the points p_i, p_j, p_j
- Loop over all of the remaining points For $k = 2 \dots j-1$
 - If the p_k is inside the circle, then the solution for points

$$\{ p_i, p_j, p_1 \rightarrow p_{k-1} \}$$

is also the solution for points

$$\{ \boldsymbol{p}_i, \boldsymbol{p}_i, \boldsymbol{p}_1 \rightarrow \boldsymbol{p}_k \}$$

If the p_k is outside the circle,
 then the solution for { p_i , p_j , p₁ → p_k}
 is the circle fit to p_i , p_j , p_k



- Incremental Construction with two known points is:
 - •
 - •
- Incremental Construction with one known point is:
 - Worst case =
 - Best case =
- Overall, Incremental Construction is:
 - Worst case =
 - Best case =

- Incremental Construction with two known points is: O(n)
 - We have to check O(1) each of the n points
 - Computing a new circle O(1) will be done at most n times
- Incremental Construction with one known point is:
 - Worst case =
 - Best case =
- Overall, Incremental Construction is:
 - Worst case =
 - Best case =

- Incremental Construction with two known points is: O(n)
 - We have to check O(1) each of the n points
 - Computing a new circle O(1) will be done at most n times
- Incremental Construction with one known point is:
 - Worst case = $O(n^2)$ if we compute a new circle, calling two known points function, n times
 - Best case = O(n) never or rarely call the two known points function
- Overall, Incremental Construction is:
 - Worst case =
 - Best case =

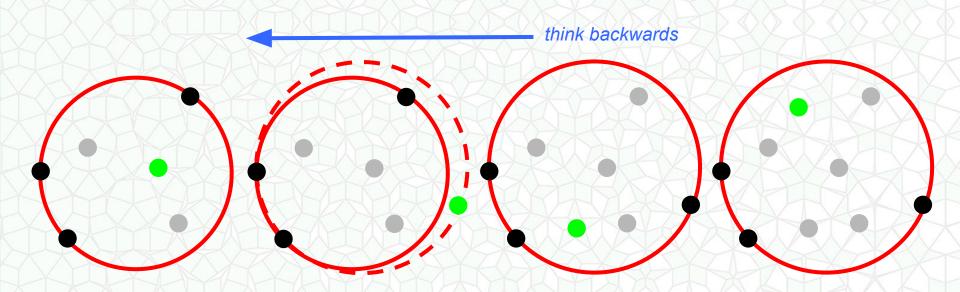
- Incremental Construction with two known points is: O(n)
 - We have to check O(1) each of the n points
 - Computing a new circle O(1) will be done at most n times
- Incremental Construction with one known point is:
 - Worst case = $O(n^2)$ if we compute a new circle, calling two known points function, n times
 - Best case = O(n) never or rarely call the two known points function
- Overall, Incremental Construction is:
 - Worst case = $O(n^3)$ if we compute a new circle, calling the one known point function, n times
 - Best case = O(n) never or rarely call the one known point function

Outline for Today

- Homework...
- Last Time: Half-Space Intersections & Randomized Incremental Construction
- A Sample Quiz Problem?
- Motivation/Application: Smallest Bounding Sphere
 - Collision Detection, Ray Tracing, Robot Placement
- Brute Force Minimal Smallest Bounding Circle
- Bounding Circle by Center of Mass
- Incremental Construction of Smallest Bounding Circle
- Randomized Incremental Construction
- Next Time: Point Location & Orthogonal Range Searching

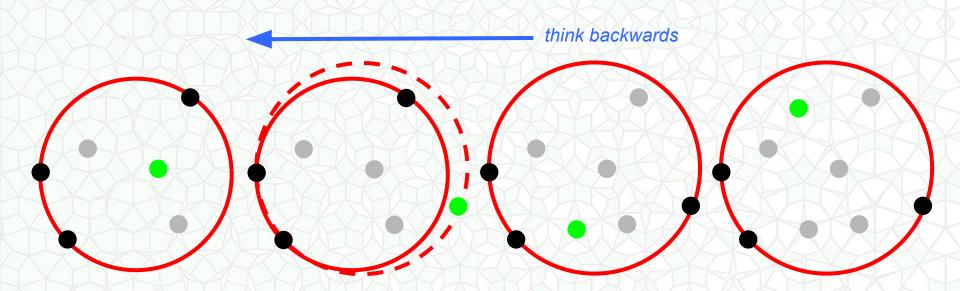
Randomized Incremental Construction

- If we randomize the initial order of the points, we will *RARELY* need to call the helper functions to compute the circles... Why???
- Let's think backwards... about removing points one at a time.



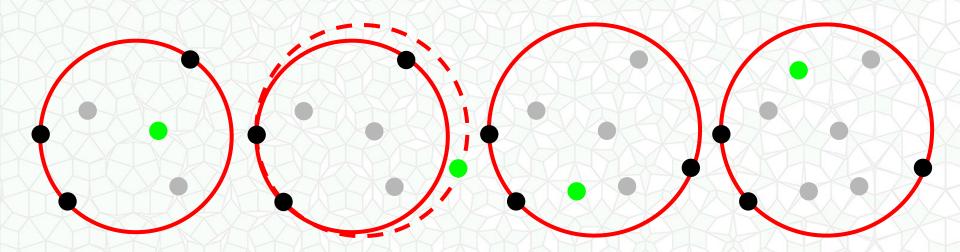
Randomized Incremental Construction

- We start with all n points and the optimal minimal bounding circle, which is defined by 3 of those points.
- Each step, we randomly choose one of *n* points to remove.



Randomized Incremental Construction

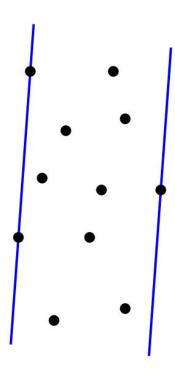
- Do we need to tighten & recompute the minimal bounding circle?
 Only when / if we remove one of the 3 circle-defining points.
- Expected chance we pick a point on the circle: 3/n each step
- Expected: O(1) circle recomputes * O(n) per recompute $\rightarrow O(n)$



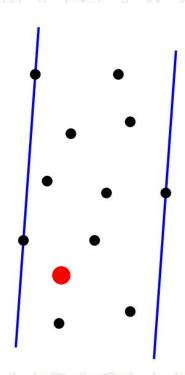
Is Randomized Incremental Construction Magic?

- Can we use it for every problem? No!
- It only works if:
 - Fast to test if new item works with the current optimal solution
 - When new item does not work,
 - Current solution can be used to compute the new optimal
 - And it will be faster than starting over from scratch

- Input: A set of 2D points
- Output: Two parallel lines that define the narrowest strip that contains all of the input points.

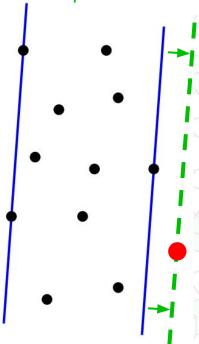


- Input: A set of 2D points
- Output: Two parallel lines that define the narrowest strip that contains all of the input points.
- It is fast to test if a new point is contained in the strip



- Input: A set of 2D points
- Output: Two parallel lines that define the narrowest strip that contains all of the input points.
- It is fast to test if a new point is contained in the strip

Is this new point definitely on one of the parallel lines?



Is this new point definitely on one of the parallel lines?

- Input: A set of 2D points
- Output: Two parallel lines that define the narrowest strip that contains all of the input points.
- It is fast to test if a new _____
 point is contained in the strip
- However, the previous solution does not help us find a new optimal solution

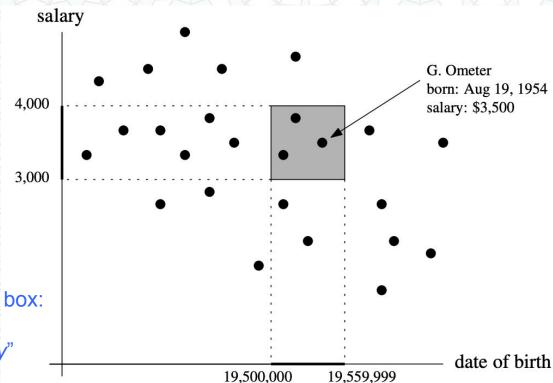
Frank Staals, http://www.cs.uu.nl/docs/vakken/ga/2021/

Outline for Today

- Homework...
- Last Time: Half-Space Intersections & Randomized Incremental Construction
- A Sample Quiz Problem?
- Motivation/Application: Smallest Bounding Sphere
 - Collision Detection, Ray Tracing, Robot Placement
- Brute Force Minimal Smallest Bounding Circle
- Bounding Circle by Center of Mass
- Incremental Construction of Smallest Bounding Circle
- Randomized Incremental Construction
- Next Time: Point Location & Orthogonal Range Searching

Motivating Application: 2D Database Queries

Return all data points with x value in range [x₀, x₁] and y value in range [y₀, y₁]



Find all values in an axis parallel box: a "rectangular range query" a.k.a. "orthogonal range query"

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 5