CSCI 4560/6560 Computational Geometry

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Lecture 7: Randomized Incremental Construction

Outline for Today

- Homework...
- Last Time: Half-Space Intersections \& Randomized Incremental Construction
- A Sample Quiz Problem?
- Motivation/Application: Smallest Bounding Sphere
- Collision Detection, Ray Tracing, Robot Placement
- Brute Force Minimal Smallest Bounding Circle
- Bounding Circle by Center of Mass
- Incremental Construction of Smallest Bounding Circle
- Randomized Incremental Construction
- Next Time: Point Location \& Orthogonal Range Searching

Homework 1 Grading (still in progress)

- Read the book problem (even more) carefully
- Sometimes necessary to get into the nitty gritty math details
- "Pseudocode" = similar to code, not just high level comments within code
- How do you compute the angle between two vectors/lines? Good to know/learn
- How do you "sort" points in 2D? Increasing dimension can make a problem more expensive, unclear, undefined, or even impossible!
- Sometimes degeneracies can be ignored - State your assumptions clearly
- Sometimes degeneracies cannot be ignored:
- Convex hull does not include points on a boundary edge between 2 other vertices
- Proof Writing: "Proof by contradiction", "Proof by induction", etc.
- What are you actually trying to prove? Have a clear plan.

Homework 1 Grading (still in progress)

- Try not to stress about the homework score
- Semester grades will be generously curved :)
- Remember that sometimes theory is about figuring out the insight (sometimes it even feels like a "trick") that allows you to contradict an assumption, or simplify/reduce the problem, etc.
- Try not to stress if you can't figure it out quickly
- Try not to stress if you can't figure it out on your own
- Ask for a hint or help if you're stuck

Even expert theorists rely on co-authors/colleagues/reviewers to proofread their proofs and point out typos \& counter-examples/bugs

Homework Autograding

- If it is unclear why you aren't getting full credit, please ask
- Some errors:
- Specific string keywords/spaces expected
- Clockwise vs. counter-clockwise winding order
- Qt drawing windows are "blocking"
- Don't launch before you have written your output files

Submitty isn't attempting to close these windows, your program is just force killed after a 10 second timeout

Outline for Today

- Homework...
- Last Time: Half-Space Intersections \& Randomized Incremental Construction
- A Sample Quiz Problem?
- Motivation/Application: Smallest Bounding Sphere
- Collision Detection, Ray Tracing, Robot Placement
- Brute Force Minimal Smallest Bounding Circle
- Bounding Circle by Center of Mass
- Incremental Construction of Smallest Bounding Circle
- Randomized Incremental Construction
- Next Time: Point Location \& Orthogonal Range Searching

Motivation: Manufacturing by Mold Casting

Failure!
Cannot be unmolded without breaking mold

- Each facet places a linear constraint on the valid unmolding directions

$$
n_{x} d_{x}+n_{y} d_{y}+n_{z} \leq 0
$$

- This half-plane / half-space space can be visualized on our dual representation $z=1$

Half Space Intersection

- Compute Feasible Region (a Convex Polygon)
by Divide \& Conquer:
- Convex Overlay of 2 Convex Polygons \rightarrow O(n)
- Full recursive solution:

$$
\rightarrow \mathrm{O}(n \log n)
$$

- Computing the region is expensive \& unnecessary if we only need one valid point inside the feasible region

Linear Optimization, a.k.a. Linear Programming

feasible region

objective function
Maximize

$$
c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{d} x_{d}
$$

Subject to

$$
\left.\begin{array}{c}
a_{1,1} x_{1}+\cdots+a_{1, d} x_{d} \leqslant b_{1} \\
a_{2,1} x_{1}+\cdots+a_{2, d} x_{d} \leqslant b_{2} \\
\vdots \\
a_{n, 1} x_{1}+\cdots+a_{n, d} x_{d} \leqslant b_{n}
\end{array}\right\}
$$

Incremental Solution - Analysis

- At each step, we will add in the next halfspace constraint h_{i+1}

Infeasible - no solution

short circuit exit!

Satisfied: $v_{1}=v_{i+1}$

$\rightarrow O(1)$

Compute new v_{i+1}

$\rightarrow O(n)$

Incremental Solution - Analysis

- Order the half-space constraints in some order: $h_{1}, h_{2}, h_{3}, \ldots h_{n}$
- We will solve incremental versions of the problem: $C_{1}, C_{2}, C_{3}, \ldots C_{n}$

$$
\rightarrow O(n)
$$

- Which have optimal solutions:

$$
v_{1}, v_{2}, v_{3}, \ldots v_{n}
$$

- C_{i} has with half-space constraints $\left\{h_{1}, h_{2}, h_{3}, \ldots h_{i}\right\}$ with solution v_{i}

Overall:
$\rightarrow O\left(n^{2}\right)$ worst case

Randomized Linear Programming

- Order the half-space constraints in some order: $h_{1}, h_{2}, h_{3}, \ldots h_{n}$
- We will solve incremental versions of the problem: $C_{1}, C_{2}, C_{3}, \ldots C_{n}$

$$
\rightarrow O(n)
$$

- Which have optimal solutions:

$$
v_{1}, v_{2}, v_{3}, \ldots v_{n}
$$

- C_{i} has with half-space constraints $\left\{h_{1}, h_{2}, h_{3}, \ldots h_{i}\right\}$ with solution v_{i}

Overall:

$\rightarrow \mathrm{O}$ (1)
short circuit exit!
$\rightarrow O(n)$ expected case

Can be shown that the case to recompute the solution is rare...

Outline for Today

- Homework...
- Last Time: Half-Space Intersections \& Randomized Incremental Construction
- A Sample Quiz Problem?
- Motivation/Application: Smallest Bounding Sphere
- Collision Detection, Ray Tracing, Robot Placement
- Brute Force Minimal Smallest Bounding Circle
- Bounding Circle by Center of Mass
- Incremental Construction of Smallest Bounding Circle
- Randomized Incremental Construction
- Next Time: Point Location \& Orthogonal Range Searching

One Guardable Polygons

Problem: Given a simple polygon with n vertices, can we decide efficiently if one guard is enough?

Frank Staals,

http://www.cs.uu.nl/docs/vakken/ga/2021/

One Guardable Polygons

Frank Staals,
http://www.cs.uu.nl/docs/vakken/ga/2021/

Outline for Today

- Homework...
- Last Time: Half-Space Intersections \& Randomized Incremental Construction
- A Sample Quiz Problem?
- Motivation/Application: Smallest Bounding Sphere
- Collision Detection, Ray Tracing, Robot Placement
- Brute Force Minimal Smallest Bounding Circle
- Bounding Circle by Center of Mass
- Incremental Construction of Smallest Bounding Circle
- Randomized Incremental Construction
- Next Time: Point Location \& Orthogonal Range Searching

Application: Collision Detection

- Virtual Reality / Video Games
- Robotics
- Scientific Simulations
- Simulation over time
- Detect collisions
- Compute response:
- Force of impact
- Damage (deformation or fracture)
- Bouncing / change of direction

Intersect Two Spheres

- Collision Detection /

Overlap test between two spheres?

Intersect Two Spheres

- Collision Detection /

Overlap test between two spheres?

- Compute D, the distance between centers
- $D\left(C_{1}, C_{2}\right)<r_{1}+r_{2}$

Cost of Collision Detection?

- If we have n bouncing ping pong balls inside of a box (6 quads)?
- If we add a stationary bunny statue ($w / f=60,000$ faces) inside the box?
- What if we add b bunny statues bouncing around inside the box?

Naive Collision Detection

- Every frame of animation/simulation, intersect every sphere/triangle in motion with every other sphere/triangle (both stationary and in motion)

$$
\rightarrow O\left(\left(n+b^{*} f+6\right)^{*}\left(n+b^{*} f\right)\right)
$$

Application: Ray Tracing

- Cast $g=1$ gazillion rays to simulate photons bouncing off of objects (\& through objects!)
- Naive: Intersect every ray with every triangle

Laura Lediaev
http://www.omnigraphica.com/classes/cs6620/index.html

Application: Ray Tracing

- Cast $g=1$ gazillion rays to simulate photons bouncing off of objects (\& through objects!)
- Naive: Intersect every ray with every triangle
$\rightarrow O\left(g^{*} f\right)$

Laura Lediaev
http://www.omnigraphica.com/classes/cs6620/index.html

Conservative Bounding Region

- Check for a ray intersection with a conservative bounding region
- If it doesn't intersect the bounding shape, then we don't need to check against every triangle!

Conservative Bounding Region

- Check for a ray intersection with a conservative bounding region
- If it doesn't intersect the bounding shape, then we don't need to check against every triangle!

Conservative Bounding Region

- Check for collisions between conservative bounding regions
- If two regions don't intersect, then we don't collide every triangle against every triangle!

Conservative Bounding Regions

Requirements:

- tight \rightarrow avoid false positives
- fast to intersect
- easy/fast/perfect construction (less important)
arbitrary convex region (bounding half-spaces)

Another Application: Robot Placement

- We need a fixed-base robot to reach a bunch of objects from a set of n a known positions
- What is the smallest robot necessary (minimum arm length)?
- Where should the robot base be located?

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Outline for Today

- Homework...
- Last Time: Half-Space Intersections \& Randomized Incremental Construction
- A Sample Quiz Problem?
- Motivation/Application: Smallest Bounding Sphere
- Collision Detection, Ray Tracing, Robot Placement
- Brute Force Minimal Smallest Bounding Circle
- Bounding Circle by Center of Mass
- Incremental Construction of Smallest Bounding Circle
- Randomized Incremental Construction
- Next Time: Point Location \& Orthogonal Range Searching

Problem: Minimal Bounding Sphere Circle

- Input: n vertices in 3D 2D
- Assume (for convenience):

Note: In 3D, we would output 4 vertices (4 vertices uniquely define a sphere)

How to Fit a Circle to 3 Points? (not collinear)

How to Fit a Circle to 3 Points? (not collinear)

Points: $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\left(x_{3}, y_{3}\right)$
Solve for center $=(x, y)$ and radius $=r$
Solve system of equations: 3 equations, 3 unknowns

$$
\begin{aligned}
& \left(x_{1}-x\right)^{2}+\left(y_{1}-y\right)^{2}=r^{2} \\
& \left(x_{2}-x\right)^{2}+\left(y_{2}-y\right)^{2}=r^{2} \\
& \left(x_{3}-x\right)^{2}+\left(y_{3}-y\right)^{2}=r^{2}
\end{aligned}
$$

How to Test if Point is Inside/Outside Circle?

Point: $\left(x_{1}, y_{1}\right)$
Circle: center $=(x, y)$ and radius $=r$

How to Test if Point is Inside/Outside Circle?

Point: $\left(x_{1}, y_{1}\right)$
Circle: center $=(x, y)$ and radius $=r$

Evaluate:

$\left(x_{1}-x\right)^{2}+\left(y_{1}-y\right)^{2}>r^{2} \rightarrow$ outside circle $\left(x_{1}-x\right)^{2}+\left(y_{1}-y\right)^{2}=r^{2} \rightarrow$ on edge of circle $\left(x_{1}-x\right)^{2}+\left(y_{1}-y\right)^{2}<r^{2} \rightarrow$ inside circle

Brute Force Minimal Bounding Circle

- Input: n vertices in 2D

Brute Force Minimal Bounding Circle

- Input: n vertices in 2D
- For every triplet of those points
- Compute circle
- Check against all other points
- Reject if any are outside circle

Overall Analysis:

Brute Force Minimal Bounding Circle

- Input: n vertices in 2D
- For every triplet of those points

$$
\begin{aligned}
& \rightarrow " n \text { chose } 3 " \text { triplets }=n!/(3!*(n-3)!) \\
&=n^{*}(n-1)^{*}(n-2) / 6=O\left(n^{3}\right)
\end{aligned}
$$

- Compute circle $\rightarrow O(1)$
- Check against all other points $\rightarrow \mathrm{O}(n)$
- Reject if any are outside circle

Overall Analysis: $\rightarrow O\left(n^{4}\right) \quad$ can we do better?

Outline for Today

- Homework...
- Last Time: Half-Space Intersections \& Randomized Incremental Construction
- A Sample Quiz Problem?
- Motivation/Application: Smallest Bounding Sphere
- Collision Detection, Ray Tracing, Robot Placement
- Brute Force Minimal Smallest Bounding Circle
- Bounding Circle by Center of Mass
- Incremental Construction of Smallest Bounding Circle
- Randomized Incremental Construction
- Next Time: Point Location \& Orthogonal Range Searching

Bounding Circle by Center of Mass

- Let the center = average of all of the vertices

Bounding Circle by Center of Mass

- Let the center = average of all of the vertices
- Find point furthest from center, use that to set the radius
- Are all points on or inside this circle?
- Overall running time?
- Is this optimal/tightest circle?

Bounding Circle by Center of Mass

- Let the center = average of all of the vertices $\rightarrow \mathrm{O}(n)$
- Find point furthest from center, use that to set the radius $\rightarrow \mathrm{O}(n)$

Non-optimal answer is probably ok for graphícs applications... but can we dobetter? Find the optimal/tightest circle?

Outline for Today

- Homework ...
- Last Time: Half-Space Intersections \& Randomized Incremental Construction
- A Sample Quiz Problem?
- Motivation/Application: Smallest Bounding Sphere
- Collision Detection, Ray Tracing, Robot Placement
- Brute Force Minimal Smallest Bounding Circle
- Bounding Circle by Center of Mass
- Incremental Construction of Smallest Bounding Circle
- Randomized Incremental Construction
- Next Time: Point Location \& Orthogonal Range Searching

Let's Try Incremental Construction...

- Make a circle with the first 3 points p_{1}, p_{2}, p_{3}
- Loop over all of the remaining points

For $i=4 \ldots n$

Incremental Construction

- Make a circle with the first 3 points p_{1}, p_{2}, p_{3}
- Loop over all of the remaining points

For $i=4 \ldots n$

- If the p_{i} is inside the circle, then the solution for points $\left\{p_{1} \rightarrow p_{i-1}\right\}$
is also the solution for points $\left\{p_{1} \rightarrow p_{i}\right\}$
- If p_{i} is outside the circle, then solve for the new circle NOTE: p_{i} is definitely ON the circle solution for $\left\{p_{1} \rightarrow p_{i}\right\}$

Complexity of Incremental Construction?

- If the current circle is fit to points $a, b, c \ldots$

Complexity of Incremental Construction?

- If the current circle is fit to points $a, b, c \ldots$
- Can we prove/disprove that adding p_{i} will be a circle fit to
- a, b, p_{i} OR
- b, c, pi OR
- a, c, p_{i}

Complexity of Incremental Construction?

- If the current circle is fit to points a, b, c...
- Can we prove/disprove that adding p_{i} will be a circle fit to
- a, b, p_{i} OR
- a, c, p_{i} OR
- b, c, p_{i}
- Do we need to consider all other points? YES!!!

Complexity of Incremental Construction?

- If the current circle is fit to points a, b, c...
- Can we prove/disprove that adding p_{i} will be a circle fit to
- a, b, p_{i} OR
- a, c, p_{i} OR
- b, c, p_{i}
- Do we need to consider all other points? YES!!!

Incremental Construction with one point hown

- Make a circle with the points $p_{i}, \mathrm{p}_{1}, \mathrm{p}_{2}$
- Loop over all of the remaining points

For $j=3 \ldots$... 1

- If the p_{j} is inside the circle, then the solution for points $\left\{p_{i}, p_{1} \rightarrow p_{j-1}\right\}$ is also the solution for points $\left\{p_{i}, p_{1} \rightarrow p_{j}\right\}$
- If the p_{j} is outside the circle, then solve for the new circle
NOTE: p_{j} is definitely ON the circle solution for $\left\{p_{i}, p_{1} \rightarrow p_{j}\right\}$

Incremental Construction with two points known

- Make a circle with the points p_{i}, p_{j}, p_{1}
- Loop over all of the remaining points For $k=2 \ldots j-1$
- If the p_{k} is inside the circle, then the solution for points
$\left\{p_{i}, p_{j}, p_{1} \rightarrow p_{k-1}\right\}$
is also the solution for points
$\left\{p_{i}, p_{j}, p_{1} \rightarrow p_{k}\right\}$
- If the p_{k} is outside the circle, then the solution for $\left\{p_{i}, p_{j}, p_{1} \rightarrow p_{k}\right\}$ is the circle fit to p_{i}, p_{j}, p_{k}

Analysis of Incremental Construction

- Incremental Construction with two known points is:
- Incremental Construction with one known point is:
- Worst case =
- Best case =
- Overall, Incremental Construction is:
- Worst case =
- Best case $=$

Analysis of Incremental Construction

- Incremental Construction with two known points is: $O(n)$
- We have to check $O(1)$ each of the n points
- Computing a new circle $O(1)$ will be done at most n times
- Incremental Construction with one known point is:
- Worst case =
- Best case =
- Overall, Incremental Construction is:
- Worst case =
- Best case $=$

Analysis of Incremental Construction

- Incremental Construction with two known points is: $O(n)$
- We have to check $O(1)$ each of the n points
- Computing a new circle $O(1)$ will be done at most n times
- Incremental Construction with one known point is:
- Worst case $=O\left(n^{2}\right)$ - if we compute a new circle, calling two known points function, n times
- Best case $=O(n)$ - never or rarely call the two known points function
- Overall, Incremental Construction is:
- Worst case =
- Best case $=$

Analysis of Incremental Construction

- Incremental Construction with two known points is: $O(n)$
- We have to check $O(1)$ each of the n points
- Computing a new circle $O(1)$ will be done at most n times
- Incremental Construction with one known point is:
- Worst case $=O\left(n^{2}\right)$ - if we compute a new circle, calling two known points function, n times
- Best case $=O(n)$ - never or rarely call the two known points function
- Overall, Incremental Construction is:
- Worst case $=O\left(n^{3}\right)$ - if we compute a new circle, calling the one known point function, n times
- Best case $=\mathbf{O}(n)-$ never or rarely call the one known point function

Outline for Today

- Homework...
- Last Time: Half-Space Intersections \& Randomized Incremental Construction
- A Sample Quiz Problem?
- Motivation/Application: Smallest Bounding Sphere
- Collision Detection, Ray Tracing, Robot Placement
- Brute Force Minimal Smallest Bounding Circle
- Bounding Circle by Center of Mass
- Incremental Construction of Smallest Bounding Circle
- Randomized Incremental Construction
- Next Time: Point Location \& Orthogonal Range Searching

Randomized Incremental Construction

- If we randomize the initial order of the points, we will RARELY need to call the helper functions to compute the circles... Why???
- Let's think backwards... about removing points one at a time.

Randomized Incremental Construction

- We start with all n points and the optimal minimal bounding circle, which is defined by 3 of those points.
- Each step, we randomly choose one of n points to remove.

Randomized Incremental Construction

- Do we need to tighten \& recompute the minimal bounding circle?

Only when / if we remove one of the 3 circle-defining points.

- Expected chance we pick a point on the circle: $3 / n$ each step
- Expected: O(1) circle recomputes * O(n) per recompute $\rightarrow O(n)$

Is Randomized Incremental Construction Magic?

- Can we use it for every problem? No!
- It only works if:
- Fast to test if new item works with the current optimal solution
- When new item does not work,
- Current solution can be used to compute the new optimal
- And it will be faster than starting over from scratch

Frank Staals,
http://www.cs.uu.nl/docs/vakken/ga/2021/

A Counter-Example: Minimum Strip Width

- Input: A set of 2D points
- Output: Two parallel lines that define the narrowest strip that contains all of the input points.

A Counter-Example: Minimum Strip Width

- Input: A set of 2D points
- Output: Two parallel lines that define the narrowest strip that contains all of the input points.
- It is fast to test if a new point is contained in the strip

A Counter-Example: Minimum Strip Width

- Input: A set of 2D points
- Output: Two parallel lines that define the narrowest strip that contains all of the input points.
- It is fast to test if a new point is contained in the strip

A Counter-Example: Minimum Strip Width

- Input: A set of 2D points
- Output: Two parallel lines that define the narrowest strip that contains all of the input points.
- It is fast to test if a new point is contained in the strip

- However, the previous solution does not help us find a new optimal solution

Frank Staals,http://www.cs.uu.nl/docs/vakken/ga/2021/

Outline for Today

- Homework...
- Last Time: Half-Space Intersections \& Randomized Incremental Construction
- A Sample Quiz Problem?
- Motivation/Application: Smallest Bounding Sphere
- Collision Detection, Ray Tracing, Robot Placement
- Brute Force Minimal Smallest Bounding Circle
- Bounding Circle by Center of Mass
- Incremental Construction of Smallest Bounding Circle
- Randomized Incremental Construction
- Next Time: Point Location \& Orthogonal Range Searching

Motivating Application: 2D Database Queries

- Return all data points with x value in
range $\left[x_{0}, x_{1}\right]$ and y value in range $\left[y_{0}, y_{1}\right]$

Find all values in an axis parallel box: a "rectangular range query" a.k.a. "orthogonal range query"

