CSCI 4560/6560 Computational Geometry

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Lecture 8. Orthogonal
Range Searching


https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Outline for Today
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e Last Time: Bounding Spheres &
Randomized Incremental Construction
e Motivating Application: Database Queries
e Motivating Application: Graphics & Photon Mapping
e Data Structure Choices - Evaluation Criteria
e cost to construct, memory to construct, cost to query
e Review: (1D) Binary Search Trees
e 2D kD Trees & Higher dimension kD Trees
e 2D Range Trees & Higher Dimension Range Trees



Outline for Today

e Homework 4 Posted
e Last Time: Bounding Spheres &
Randomized Incremental Construction
e Motivating Application: Database Queries
e Motivating Application: Graphics & Photon Mapping
e Data Structure Choices - Evaluation Criteria
e cost to construct, memory to construct, cost to query
e Review: (1D) Binary Search Trees
e 2D kD Trees & Higher dimension kD Trees
e 2D Range Trees & Higher Dimension Range Trees



Problem: Minimal Bounding Sphere Circle

e Input: n vertices in 3B 2D bounding
sphere

e Assume (for convenience):

“General Position”

e No 3 points are collinear
e No 4 points lie on the same circle

e OQOutput: 3 of those vertices uniquely
define a circle such that all other points
lie inside of that circle

Note: In 3D, we would output 4 vertices
(4 vertices uniquely define a sphere)




Problem: Minimal Bounding Sphere Circle

e Brute Force: O(n?) BoUNdIG
e Try ALL triples, check against all other pomts sphers
e Best Case: O(n)
e Fit circle to first 3 points
e Check all other points
e Be lucky!
e Worst Case: O(n’)
e Fit circle to first 3 points
e Unfortunately, find a point outside the circle
e Try again... but we know that
point MUST be on the solution circle




Randomized Incremental Construction

e We start with all n points and the optimal minimal bounding circle,
which is defined by 3 of those points.
e Each step, we randomly choose one of n points to remove.

think backwards




Randomized Incremental Construction

e We start with all n points and the optimal mini: The probability that the

. p 3 : removed point defined the

e FEach step, we randomly choose one of n pa YWe expect to recompute
the circle O(1) times.

think backwards
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Motivating Application: 2D Database Queries

e Return all data points salary 5
with x value in ®
® ® G. Ometer
range [ X,, X, ] 1000 ® / born: Aug 19, 1954
. P pEREARRIERAERRSEEERRRERE salary: $3,500
and y value in . = o . ° oo .
range [ y,, y,] ® ® ®
000 Yescessssssrsszensssanss
° :
® : [ [
® ]
: ®
¢
Find all values in an axis parallel box: ' *
a “rectangular range query” . .
a.k.a. “orthogonal range query : : date of birth

19,500,000 19,559,999

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5



Higher Dimensional Database Queries

Return all data points with
x value in
range [ x,, X, |

4000 |

and y value in Select all people - - L
born 1950-1960, - 7z,
range)[iy,, yj] with salary . <
and z value in 3,000-4,000, ) * R
range [z, z,] who have Lt Z
R, 2-4 children 3,000 .
S 5 A . A
Find all values in an axis parallel box: ) Z I
a “rectangular range query” AR DR
a.k.a. “orthogonal range query”
Computational Geometry Algorithms and Applications, 1 9’ 5 00,000 19 ) 5 5 9 ,999

de Berg, Cheong, van Kreveld and Overmars, Chapter 5
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Using Photon Map for Rendering

e Find the tightest sphere capturing k photons
e Divide the energy from those photons by
the surface area covered by that sphere
e \What is the best
data structure
to store
millions of
photons?
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Collecting Photons
from a kd tree

e Query point, and initial guess
for radius (red)

e Make a rectangular/orthogonal
query to the kD tree (yellow)

e kD tree returns all cells that
overlap with query box (blue)

e Further processing necessary to
filter points inside red circle and
find smallest circle capturing
exactly k photons
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Review: 1 Dimensional Binary Search Trees

Everything to the left is < root
Everything to the right is > root
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Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5
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Assumptions

e No 2 data points have the same value in any dimension
Only for algorithm presentation & analysis convenience,
there are straightforward workarounds...

e \We are given all of the data points at the start,
allowing us to sort the data and construct well-balanced trees



1D BST Construction Algorithm
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1D BST Construction Algorithm

Sort the data by x value

Put the median (middle)
value at the root @
Create 2 sublists for
left & right

31110 (19
Recurse H
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1D BST Construction Algorithm

e Sort the data by x value
— O(n log n)

only need to do this once!

e Put the median (middle)
value at the root

(10
3) (1 €

— O(1)
e Create 2 sublists for

left & right

— O(n) for copy 31(10] {19
e Recurse U

— Qverall O(n log n)
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1D BST Query Algorithm

e Givenadesiredrange [y, u’'] eq.,[19,80]

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5



1D BST Query Algorithm

e Givenadesiredrange [y, u’'] eq.,[19,80]

e Locate the leaf storing u
e |ocate the leaf storing i’
e Increment from uy — u’

¢ NOpesratortA

® Operator++ fromuy— yu’

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5



1D BST Query Algorithm

e Givenadesiredrange [y, u’'] eq.,[19,80]

e Locate the leaf storing u — O(log n)
e Locate the leaf storing y” — O(log n)
e Increment from uy — u’
¢ NOpesratortA
— O(1) expected time
® Operator++ fromuy— yu’
— Kk * O(1) = O(k) expected

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5



n values in the structure

1 D BST Query Algonthm k is the # of elements returned

an output-sensitive algorithm

Given adesiredrange [y, u’] e.qg., [ 19, 80] root(T)

Locate the leaf storing y — O(log n)
Locate the leaf storing u° — O(log n)
Increment from y — u’
€ /Opesa DorTA
— O(1) expected time
® Operator++ fromuy— yu’
— k * O(1) = O(k) expected
Equivalently: Find all
subtrees between the leaves, # the selected subtrees E
return all values in those subtrees

I

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5



Analysis: 1D Binary Search Tree

Starting with n values..

e Memory to store:

e # of leaf nodes:

e # of intermediate nodes:

e Height of tree:
e Time to construct:

e Sort the data:

e Place middle value at root, recurse on left & right sublists:
e Time to query:

e For search target / output returning k values



Analysis: 1D Binary Search Tree

Starting with n values..

e Memory to store: — O(n)

e # of leaf nodes: n

e # of intermediate nodes: n-17

e Height of tree: /og n
e Time to construct: — O(n log n)

e Sortthe data: O(nlog n)

e Place middle value at root, recurse on left & right sublists: O(n)
e Time to query: — O(log n + k)

e For search target / output returning k values
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What is a k-d Tree?

(0,100)

"Multidimensional Binary Search Trees
Used for Associative Searching”,
Communications of the ACM,

Bentley 1975
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2D kd Tree Construction
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2D kd Tree Construction

e Make 2 sorted lists,
by x value and by y value

e Alternate dimensions
(first split by x then by y)

e Find the median value

e Make a copy of the sorted
lists, omitting values from
the other side

e Recurse
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2D kd Tree Query Algorithm
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2D kd Tree Query Algorithm

e At each split point

e Determine if the
query box overlaps Pal o ri2
the split line *

e Recurse down one 23
or both branches -

e |[f a subtree lies P

completely inside the P3 ot
box, return all items pe
in that subtree

e Perform filtering in
the leaves as
necessary




https://salzis.wordpress.com/2014/06/28/kd-tree-a
nd-nearest-neighbor-nn-search-2d-case/

2D kd Tree Query Analysis

e 1itemis stored per leaf node S | I | I A = T I R
e For a query that will collect k items | ‘ . g :4 ERSTIN ;—R
: 0_* ; le I I '_.o_ s & '= ——f—{ i
. e—‘ f nrj “ =.—” o ®»— o i °
- 1.l oLl ]t :
i | 41 ®




https://salzis.wordpress.com/2014/06/28/kd-tree-a

2 D kd Tree Q u e ry An a I yS i S nd-nearest-neighbor-nn-search-2d-case/

e 1item is stored per leaf node ——— L P el
e For a query that will collect kitems [ e bt 5] “14 T <t.0 o 1o . |
i hs L e |l o -

e Best/Average(?) Case: _ o [l ~ I sl | |e x_%
An approximately square query : v I E X N b MAFT_ |
(equal width & height) : || - Tﬁ "

e touches/overlaps O(k) leaves [ Z e 1o e | 1| s
o gathering leaves Oflogn +k) | "3t ¢ r. & 11
e Overall - O(log n + k) : Thel e _.% O *
i =—4 . "J T. g ._—'-_ I [ -
° | j. ®




https://salzis.wordpress.com/2014/06/28/kd-tree-a

2 D kd Tree Q u e ry An a I yS i S nd-nearest-neighbor-nn-search-2d-case/

e 1item is stored per leaf node ———t e e e
e Fora query that will collect kitems (e da ™7 714 1.1 o 1o,
e Best/Average(?) Case: A j: ) s B 1_R
An approximately square query : + it 8 I ! E 5 X ] oo M‘FT_ -
(equal width & height) : E a1 T"4 T
e touches/overlaps O(k) leaves N dr | [ T 17 s
e gathering leaves O(logn +k) [ ¢ 1. ¢ [. ﬂu j 1
e Overall — O(log n + k) el e 1 ¢ BB 7
e Worst Case Query: —s at e 3 R F W e
For a skinny / lopsided query box | | |« = 1113 11— T'e
e touches/overlaps - Vn +kleaves -] | | 1. 7] T |+ .t 4] .
e gathering leaves O(\Nn +k) ‘ A 9% ! | 11
e Overall —» O(\n + k) - ' -1 ST T




Analysis: 2D kd Tree

Starting with n values..

e Memory to store: — O(n)
e # ofleaf nodes: n
e # of intermediate nodes: n-17
e Height of tree: log n
e Time to construct: — O(n log n)
e pre-sort the data, separately in xand in y: O(n log n)
e Alternate axes - place middle value at root,
recurse on the two sublists: O(n log n)
e Time to query: — O(n"? + k) =O(In + k)  in worst case
e For search target / output returning k values



Is Query Time = O(\Nn + k) a problem?



Is Query Time = O(\Nn + k) a problem?

O(1) < O(logn) < O(log’n) < O(Rn) < O(n)
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Analysis: 3D kd Tree and higher dimensions

Starting with n values..

e Memory to store: — O(n)
e # ofleaf nodes: n
e # of intermediate nodes: n-17
e Height of tree: log n
e Time to construct: — O(n log n)
e pre-sort the data, separately in xand in y and in z. O(n log n)
e Rotate through axes (x, y, z, X, ... ) — place middle value at root,
recurse on two sublists: O(n log n)
e Time to query: — O(n?® + k) — O(n™" + k) in worst case
e For search target / output returning k values



Is Query Time = O(n"-"? + k) a problem?

Yeah, this is a problem as dimensions increase
Common for complex databases and typical, interesting queries

150 |
100 |

50 |

200

400

600

800

1000

All people born 1950-1960,

H J J

who have 2-4 children

With ANY salary...

— ™ Becomes a
skinny query
box in one axis!
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What is a Range Tree?

Idea: If we use more T
memory, can we reduce worsy)inary S ——
case query time of x-coordinates

kD tree?

binary search tree
on y-coordinates

First we organize the

data in a BST by x value

At every node In the tree,
we store a pointer to a BST
with the same data, but P(v)
organized by y value

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5



What is a Range Tree?

e |dea: If we use more
memory, can we reduce worst
case query time of
kD tree?

e First we organize the
data in a BST by x value

e At every node in the tree,
we store a pointer to a BST
with the same data, but
organized by y value

Computational Geometry Algorithms and Applications, p
de Berg, Cheong, van Kreveld and Overmars, Chapter 5



How to Construct the
2D Range Tree?

How much memory does it use?




How to Construct the
2D Range Tree?

How much memory does it use?

e Each point p is stored once in the level 1
(organized by x) tree
And many times in level 2 (organized by y) trees
How many level 2 trees? And how big are they?
e 1 tree with n values
2 trees with n/2 values
4 trees with n/4 values

n trees with 1 values

— O(n) memory for the level 1 tree
— O(n log n) memory in total for all of the level 2 trees



How to Query
2D Range Tree?




How to Query
2D Range Tree?

Search through level 1 (blue) tree for
all intermediate nodes that fit completely
inside the query’s x range

For each matched intermediate blue node

e Search through the corresponding
level 2 (green) trees for all nodes
and leaves that fit completely
inside the query’s y range

Return all matching data!




Analysis: 2D Range Tree

Starting with n values..

e Memory to store:

e Time to construct:

e Time to query:



Analysis: 2D Range Tree

Starting with n values..

e Memory to store: — O(nlog n)

e Time to construct: — O(n log n)

e Time to query: — O(log” n + k)



Higher Dimensional
Range Tree

e ... and can be extended to
arbitrarily higher dimensions

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5




Analysis: 3D kd Tree and higher dimensions

Starting with n values..

e Memory to store: ’}A\

e Time to construct:

e Time to query:




Analysis: 3D kd Tree and higher dimensions

Starting with n values..

e Memory to store: — O(nlog?"n)

e Time to construct: — O(nlog®"n)

e Time to query: — O(log % n + k)




Summary Comparison

e For n points, dimension d, with query to collect k items
e kdtree
e Construction time: — O(n log n)
e Memory: — O(n)
e Querytime
e Square(ish) box: — O(log n + k)
e Worst case (long, skinny box): — O(n"""9 + k)
e Range tree
e Construction time — O(n log®’ n) Tradeoff:
» Memory — O(n log" 1) e ers e
e Querytime — O(log?n + k)
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Next Lecture: GPS Point Localization

e Given a 2D coordinate, e.g., a latitude & longitude

. . . . 7.4
What region of the ocean contains this point”~ gt .~ AN B e S B
e Access currents, weather, etc. https://svs.gsfc.nasa.gov/




