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● 2D Range Trees & Higher Dimension Range Trees 
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Problem: Minimal Bounding Sphere Circle
● Input: n vertices in 3D 2D
● Assume (for convenience): 

“General Position”
● No 3 points are collinear
● No 4 points lie on the same circle

● Output: 3 of those vertices uniquely 
define a circle such that all other points 
lie inside of that circle

Note: In 3D, we would output 4 vertices 
(4 vertices uniquely define a sphere)

bounding
sphere



Problem: Minimal Bounding Sphere Circle
● Brute Force: O(n4)  

● Try ALL triples, check against all other points
● Best Case: O(n) 

● Fit circle to first 3 points
● Check all other points
● Be lucky!

● Worst Case: O(n3) 
● Fit circle to first 3 points
● Unfortunately, find a point outside the circle
● Try again… but we know that 

point MUST be on the solution circle

bounding
sphere



Randomized Incremental Construction
● We start with all n points and the optimal minimal bounding circle, 

which is defined by 3 of those points.
● Each step, we randomly choose one of n points to remove.

think backwards



Randomized Incremental Construction
● We start with all n points and the optimal minimal bounding circle, 

which is defined by 3 of those points.
● Each step, we randomly choose one of n points to remove.

think backwards

The probability that the 
removed point defined the 

circle is 3/n each step.
We expect to recompute 

the circle O(1) times.  
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Motivating Application: 2D Database Queries
● Return all data points 

with x value in 
range [ x0 , x1 ] 
and y value in 
range [ y0 , y1 ]

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

Find all values in an axis parallel box: 
a “rectangular range query” 

a.k.a. “orthogonal range query”



Higher Dimensional Database Queries
● Return all data points with 

x value in 
range [ x0 , x1 ] 
and y value in 
range [ y0 , y1 ] 
and z value in 
range [ z0 , z1 ] 
and …

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

Find all values in an axis parallel box: 
a “rectangular range query” 

a.k.a. “orthogonal range query”

Select all people 
born 1950-1960, 

with salary 
3,000-4,000, 
who have 

2-4 children
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Motivating Application: Photon Mapping

Henrik Wann Jensen

● Photons bounce around room and stored on each surface they hit



Using Photon Map for Rendering
● Find the tightest sphere capturing k photons
● Divide the energy from those photons by 

the surface area covered by that sphere
● What is the best 

data structure 
to store 
millions of 
photons?
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Data Structures Homework 8: Quad Tree



Collecting Photons 
from a kd tree
● Query point, and initial guess 

for radius (red)
● Make a rectangular/orthogonal 

query to the kD tree (yellow)
● kD tree returns all cells that 

overlap with query box (blue)
● Further processing necessary to 

filter points inside red circle and 
find smallest circle capturing 
exactly k photons
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Review: 1 Dimensional Binary Search Trees
● Everything to the left is ≤ root
● Everything to the right is > root

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 5



Assumptions          

● No 2 data points have the same value in any dimension 
Only for algorithm presentation & analysis convenience, 
there are straightforward workarounds…

● We are given all of the data points at the start, 
allowing us to sort the data and construct well-balanced trees



1D BST Construction Algorithm

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 5



1D BST Construction Algorithm
● Sort the data by x value

● Put the median (middle) 
value at the root

● Create 2 sublists for 
left & right

● Recurse

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

n values in the structure



1D BST Construction Algorithm
● Sort the data by x value

→ O(n log n) 
only need to do this once!

● Put the median (middle) 
value at the root 
→ O(1)

● Create 2 sublists for 
left & right 
→ O(n) for copy

● Recurse

→ Overall O(n log n)
Computational Geometry Algorithms and Applications, 

de Berg, Cheong, van Kreveld and Overmars, Chapter 5

n values in the structure



1D BST Query Algorithm

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

● Given a desired range [ μ , μ’ ]   e.g., [ 19 , 80 ] 



1D BST Query Algorithm
● Given a desired range [ μ , μ’ ]   e.g., [ 19 , 80 ]

 
● Locate the leaf storing μ  
● Locate the leaf storing μ’  
● Increment from μ → μ’

● Operator++ 

● Operator++ from μ → μ’ 

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

n values in the structure
k is the # of elements returned
an output-sensitive algorithm



1D BST Query Algorithm
● Given a desired range [ μ , μ’ ]   e.g., [ 19 , 80 ]

 
● Locate the leaf storing μ  → O(log n)
● Locate the leaf storing μ’  → O(log n)
● Increment from μ → μ’

● Operator++ 
→ O(1) expected time

● Operator++ from μ → μ’ 
→ k * O(1) = O(k) expected

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

n values in the structure
k is the # of elements returned
an output-sensitive algorithm



1D BST Query Algorithm

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

● Given a desired range [ μ , μ’ ]   e.g., [ 19 , 80 ]
 

● Locate the leaf storing μ  → O(log n)
● Locate the leaf storing μ’  → O(log n)
● Increment from μ → μ’

● Operator++ 
→ O(1) expected time

● Operator++ from μ → μ’ 
→ k * O(1) = O(k) expected

● Equivalently:  Find all 
subtrees between the leaves, 
return all values in those subtrees

n values in the structure
k is the # of elements returned
an output-sensitive algorithm



Analysis: 1D Binary Search Tree
Starting with n values..

● Memory to store:
● # of leaf nodes:  
● # of intermediate nodes: 
● Height of tree:  

● Time to construct:
● Sort the data: 
● Place middle value at root, recurse on left & right sublists:

● Time to query: 
● For search target / output returning k values

n values in the structure
k is the # of elements returned
an output-sensitive algorithm



Analysis: 1D Binary Search Tree
Starting with n values..

● Memory to store:   → O(n)
● # of leaf nodes:  n
● # of intermediate nodes:  n-1
● Height of tree:  log n

● Time to construct:   → O(n log n)
● Sort the data:   O(n log n)
● Place middle value at root, recurse on left & right sublists:  O(n)

● Time to query:  → O(log n + k)
● For search target / output returning k values

n values in the structure
k is the # of elements returned
an output-sensitive algorithm
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"Multidimensional Binary Search Trees 
Used for Associative Searching", 
Communications of the ACM, 
Bentley 1975

What is a k-d Tree?



2D kd Tree Construction



2D kd Tree Construction
● Make 2 sorted lists, 

by x value and by y value

● Alternate dimensions 
(first split by x then by y)

● Find the median value
● Make a copy of the sorted 

lists, omitting values from 
the other side

● Recurse



2D kd Tree Query Algorithm



2D kd Tree Query Algorithm
● At each split point
● Determine if the 

query box overlaps 
the split line

● Recurse down one 
or both branches 

● If a subtree lies 
completely inside the 
box, return all items 
in that subtree

● Perform filtering in 
the leaves as 
necessary



2D kd Tree Query Analysis
● 1 item is stored per leaf node
● For a query that will collect k items

https://salzis.wordpress.com/2014/06/28/kd-tree-a
nd-nearest-neighbor-nn-search-2d-case/



https://salzis.wordpress.com/2014/06/28/kd-tree-a
nd-nearest-neighbor-nn-search-2d-case/2D kd Tree Query Analysis

● 1 item is stored per leaf node
● For a query that will collect k items
● Best/Average(?) Case:  

An approximately square query 
(equal width & height) 
● touches/overlaps O(k) leaves
● gathering leaves O(log n + k)
● Overall → O(log n + k)



https://salzis.wordpress.com/2014/06/28/kd-tree-a
nd-nearest-neighbor-nn-search-2d-case/2D kd Tree Query Analysis

● 1 item is stored per leaf node
● For a query that will collect k items
● Best/Average(?) Case:  

An approximately square query 
(equal width & height) 
● touches/overlaps O(k) leaves
● gathering leaves O(log n + k)
● Overall → O(log n + k)

● Worst Case Query:
For a skinny / lopsided query box 
● touches/overlaps - √n +k leaves
● gathering leaves O(√n +k)
● Overall → O(√n + k)



Analysis: 2D kd Tree
Starting with n values..

● Memory to store:   → O(n)
● # of leaf nodes:  n
● # of intermediate nodes:  n-1
● Height of tree:  log n

● Time to construct:   → O(n log n)
● pre-sort the data, separately in x and in y:   O(n log n)
● Alternate axes - place middle value at root, 

recurse on the two sublists:  O(n log n)
● Time to query:  → O(n1/2 + k) = O(√n + k)      in worst case

● For search target / output returning k values



Is Query Time = O(√n + k) a problem?
 



Is Query Time = O(√n + k) a problem?
 O(1)    <    O(log n)    <    O(log2 n)    <    O(√n)    <    O(n)



Analysis: 3D kd Tree and higher dimensions
Starting with n values..

● Memory to store:   → O(n)
● # of leaf nodes:  n
● # of intermediate nodes:  n-1
● Height of tree:  log n

● Time to construct:   → O(n log n)
● pre-sort the data, separately in x and in y and in z:   O(n log n)
● Rotate through axes (x, y, z, x, … ) – place middle value at root, 

recurse on two sublists:  O(n log n)
● Time to query:  → O(n2/3 + k)  → O(n(1-1/d) + k)   in worst case

● For search target / output returning k values



Is Query Time = O(n(1-1/d) + k) a problem?
 ● Yeah, this is a problem as dimensions increase
● Common for complex databases and typical, interesting queries

All people born 1950-1960, 
with salary 3,000-4,000, 
who have 2-4 children

With ANY salary…

Becomes a 
skinny query 

box in one axis!
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What is a Range Tree?
● Idea:  If we use more 

memory, can we reduce worst 
case query time of 
kD tree?

● First we organize the 
data in a BST by x value

● At every node in the tree, 
we store a pointer to a BST 
with the same data, but 
organized by y value

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 5
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How to Construct the 
2D Range Tree?
How much memory does it use?



How to Construct the 
2D Range Tree?
How much memory does it use?

● Each point p is stored once in the level 1 
(organized by x) tree

● And many times in level 2 (organized by y) trees
● How many level 2 trees?  And how big are they?

● 1 tree with n values
● 2 trees with n/2 values
● 4 trees with n/4 values
● …
● n trees with 1 values

→ O(n) memory for the level 1 tree
→ O(n log n) memory in total for all of the level 2 trees



How to Query 
2D Range Tree?



How to Query 
2D Range Tree?
● Search through level 1 (blue) tree for 

all intermediate nodes that fit completely
inside the query’s x range

For each matched intermediate blue node

● Search through the corresponding 
level 2 (green) trees for all nodes 
and leaves that fit completely
inside the query’s y range

Return all matching data!



Analysis: 2D Range Tree
Starting with n values..

● Memory to store: 

● Time to construct:

● Time to query:



Analysis: 2D Range Tree
Starting with n values..

● Memory to store:   → O(n log n)

● Time to construct:   → O(n log n)

● Time to query:  → O(log2 n + k)



Higher Dimensional 
Range Tree
● … and can be extended to 

arbitrarily higher dimensions

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 5



Analysis: 3D kd Tree and higher dimensions
Starting with n values..

● Memory to store: 

● Time to construct:

● Time to query:



Analysis: 3D kd Tree and higher dimensions
Starting with n values..

● Memory to store:   → O(n logd-1 n)

● Time to construct:   → O(n logd-1 n)

● Time to query:  → O(log d n + k)



Summary Comparison
● For n points, dimension d, with query to collect k items
● kd tree

● Construction time:  → O(n log n)
● Memory:  → O(n)
● Query time

● Square(ish) box:  → O(log n + k)
● Worst case (long, skinny box):  → O(n(1-1/d) + k)

● Range tree
● Construction time  → O(n logd-1 n)
● Memory  → O(n logd-1 n)
● Query time  → O(log d n + k)

Tradeoff:
Use more memory

Faster runtime
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Next Lecture: GPS Point Localization
● Given a 2D coordinate, e.g., a latitude & longitude
● What region of the ocean contains this point?

● Access currents, weather, etc.
NASA Scientific Visualization Studio

https://svs.gsfc.nasa.gov/


