
CSCI 4560/6560 Computational Geometry
https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Lecture 8: Orthogonal
Range Searching

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Outline for Today
● Homework 4 Posted
● Last Time: Bounding Spheres &

Randomized Incremental Construction
● Motivating Application: Database Queries
● Motivating Application: Graphics & Photon Mapping
● Data Structure Choices - Evaluation Criteria

● cost to construct, memory to construct, cost to query
● Review: (1D) Binary Search Trees
● 2D kD Trees & Higher dimension kD Trees
● 2D Range Trees & Higher Dimension Range Trees

Outline for Today
● Homework 4 Posted
● Last Time: Bounding Spheres &

Randomized Incremental Construction
● Motivating Application: Database Queries
● Motivating Application: Graphics & Photon Mapping
● Data Structure Choices - Evaluation Criteria

● cost to construct, memory to construct, cost to query
● Review: (1D) Binary Search Trees
● 2D kD Trees & Higher dimension kD Trees
● 2D Range Trees & Higher Dimension Range Trees

Problem: Minimal Bounding Sphere Circle
● Input: n vertices in 3D 2D
● Assume (for convenience):

“General Position”
● No 3 points are collinear
● No 4 points lie on the same circle

● Output: 3 of those vertices uniquely
define a circle such that all other points
lie inside of that circle

Note: In 3D, we would output 4 vertices
(4 vertices uniquely define a sphere)

bounding
sphere

Problem: Minimal Bounding Sphere Circle
● Brute Force: O(n4)

● Try ALL triples, check against all other points
● Best Case: O(n)

● Fit circle to first 3 points
● Check all other points
● Be lucky!

● Worst Case: O(n3)
● Fit circle to first 3 points
● Unfortunately, find a point outside the circle
● Try again… but we know that

point MUST be on the solution circle

bounding
sphere

Randomized Incremental Construction
● We start with all n points and the optimal minimal bounding circle,

which is defined by 3 of those points.
● Each step, we randomly choose one of n points to remove.

think backwards

Randomized Incremental Construction
● We start with all n points and the optimal minimal bounding circle,

which is defined by 3 of those points.
● Each step, we randomly choose one of n points to remove.

think backwards

The probability that the
removed point defined the

circle is 3/n each step.
We expect to recompute

the circle O(1) times.

Outline for Today
● Homework 4 Posted
● Last Time: Bounding Spheres &

Randomized Incremental Construction
● Motivating Application: Database Queries
● Motivating Application: Graphics & Photon Mapping
● Data Structure Choices - Evaluation Criteria

● cost to construct, memory to construct, cost to query
● Review: (1D) Binary Search Trees
● 2D kD Trees & Higher dimension kD Trees
● 2D Range Trees & Higher Dimension Range Trees

Motivating Application: 2D Database Queries
● Return all data points

with x value in
range [x0 , x1]
and y value in
range [y0 , y1]

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

Find all values in an axis parallel box:
a “rectangular range query”

a.k.a. “orthogonal range query”

Higher Dimensional Database Queries
● Return all data points with

x value in
range [x0 , x1]
and y value in
range [y0 , y1]
and z value in
range [z0 , z1]
and …

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

Find all values in an axis parallel box:
a “rectangular range query”

a.k.a. “orthogonal range query”

Select all people
born 1950-1960,

with salary
3,000-4,000,
who have

2-4 children

Outline for Today
● Homework 4 Posted
● Last Time: Bounding Spheres &

Randomized Incremental Construction
● Motivating Application: Database Queries
● Motivating Application: Graphics & Photon Mapping
● Data Structure Choices - Evaluation Criteria

● cost to construct, memory to construct, cost to query
● Review: (1D) Binary Search Trees
● 2D kD Trees & Higher dimension kD Trees
● 2D Range Trees & Higher Dimension Range Trees

Motivating Application: Photon Mapping

Henrik Wann Jensen

● Photons bounce around room and stored on each surface they hit

Using Photon Map for Rendering
● Find the tightest sphere capturing k photons
● Divide the energy from those photons by

the surface area covered by that sphere
● What is the best

data structure
to store
millions of
photons?

Outline for Today
● Homework 4 Posted
● Last Time: Bounding Spheres &

Randomized Incremental Construction
● Motivating Application: Database Queries
● Motivating Application: Graphics & Photon Mapping
● Data Structure Choices - Evaluation Criteria

● cost to construct, memory to construct, cost to query
● Review: (1D) Binary Search Trees
● 2D kD Trees & Higher dimension kD Trees
● 2D Range Trees & Higher Dimension Range Trees

Data Structures Homework 8: Quad Tree

Collecting Photons
from a kd tree
● Query point, and initial guess

for radius (red)
● Make a rectangular/orthogonal

query to the kD tree (yellow)
● kD tree returns all cells that

overlap with query box (blue)
● Further processing necessary to

filter points inside red circle and
find smallest circle capturing
exactly k photons

Outline for Today
● Homework 4 Posted
● Last Time: Bounding Spheres &

Randomized Incremental Construction
● Motivating Application: Database Queries
● Motivating Application: Graphics & Photon Mapping
● Data Structure Choices - Evaluation Criteria

● cost to construct, memory to construct, cost to query
● Review: (1D) Binary Search Trees
● 2D kD Trees & Higher dimension kD Trees
● 2D Range Trees & Higher Dimension Range Trees

Review: 1 Dimensional Binary Search Trees
● Everything to the left is ≤ root
● Everything to the right is > root

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

Assumptions

● No 2 data points have the same value in any dimension
Only for algorithm presentation & analysis convenience,
there are straightforward workarounds…

● We are given all of the data points at the start,
allowing us to sort the data and construct well-balanced trees

1D BST Construction Algorithm

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

1D BST Construction Algorithm
● Sort the data by x value

● Put the median (middle)
value at the root

● Create 2 sublists for
left & right

● Recurse

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

n values in the structure

1D BST Construction Algorithm
● Sort the data by x value

→ O(n log n)
only need to do this once!

● Put the median (middle)
value at the root
→ O(1)

● Create 2 sublists for
left & right
→ O(n) for copy

● Recurse

→ Overall O(n log n)
Computational Geometry Algorithms and Applications,

de Berg, Cheong, van Kreveld and Overmars, Chapter 5

n values in the structure

1D BST Query Algorithm

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

● Given a desired range [μ , μ’] e.g., [19 , 80]

1D BST Query Algorithm
● Given a desired range [μ , μ’] e.g., [19 , 80]

● Locate the leaf storing μ
● Locate the leaf storing μ’
● Increment from μ → μ’

● Operator++

● Operator++ from μ → μ’

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

n values in the structure
k is the # of elements returned
an output-sensitive algorithm

1D BST Query Algorithm
● Given a desired range [μ , μ’] e.g., [19 , 80]

● Locate the leaf storing μ → O(log n)
● Locate the leaf storing μ’ → O(log n)
● Increment from μ → μ’

● Operator++
→ O(1) expected time

● Operator++ from μ → μ’
→ k * O(1) = O(k) expected

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

n values in the structure
k is the # of elements returned
an output-sensitive algorithm

1D BST Query Algorithm

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

● Given a desired range [μ , μ’] e.g., [19 , 80]

● Locate the leaf storing μ → O(log n)
● Locate the leaf storing μ’ → O(log n)
● Increment from μ → μ’

● Operator++
→ O(1) expected time

● Operator++ from μ → μ’
→ k * O(1) = O(k) expected

● Equivalently: Find all
subtrees between the leaves,
return all values in those subtrees

n values in the structure
k is the # of elements returned
an output-sensitive algorithm

Analysis: 1D Binary Search Tree
Starting with n values..

● Memory to store:
● # of leaf nodes:
● # of intermediate nodes:
● Height of tree:

● Time to construct:
● Sort the data:
● Place middle value at root, recurse on left & right sublists:

● Time to query:
● For search target / output returning k values

n values in the structure
k is the # of elements returned
an output-sensitive algorithm

Analysis: 1D Binary Search Tree
Starting with n values..

● Memory to store: → O(n)
● # of leaf nodes: n
● # of intermediate nodes: n-1
● Height of tree: log n

● Time to construct: → O(n log n)
● Sort the data: O(n log n)
● Place middle value at root, recurse on left & right sublists: O(n)

● Time to query: → O(log n + k)
● For search target / output returning k values

n values in the structure
k is the # of elements returned
an output-sensitive algorithm

Outline for Today
● Homework 4 Posted
● Last Time: Bounding Spheres &

Randomized Incremental Construction
● Motivating Application: Database Queries
● Motivating Application: Graphics & Photon Mapping
● Data Structure Choices - Evaluation Criteria

● cost to construct, memory to construct, cost to query
● Review: (1D) Binary Search Trees
● 2D kD Trees & Higher dimension kD Trees
● 2D Range Trees & Higher Dimension Range Trees

"Multidimensional Binary Search Trees
Used for Associative Searching",
Communications of the ACM,
Bentley 1975

What is a k-d Tree?

2D kd Tree Construction

2D kd Tree Construction
● Make 2 sorted lists,

by x value and by y value

● Alternate dimensions
(first split by x then by y)

● Find the median value
● Make a copy of the sorted

lists, omitting values from
the other side

● Recurse

2D kd Tree Query Algorithm

2D kd Tree Query Algorithm
● At each split point
● Determine if the

query box overlaps
the split line

● Recurse down one
or both branches

● If a subtree lies
completely inside the
box, return all items
in that subtree

● Perform filtering in
the leaves as
necessary

2D kd Tree Query Analysis
● 1 item is stored per leaf node
● For a query that will collect k items

https://salzis.wordpress.com/2014/06/28/kd-tree-a
nd-nearest-neighbor-nn-search-2d-case/

https://salzis.wordpress.com/2014/06/28/kd-tree-a
nd-nearest-neighbor-nn-search-2d-case/2D kd Tree Query Analysis

● 1 item is stored per leaf node
● For a query that will collect k items
● Best/Average(?) Case:

An approximately square query
(equal width & height)
● touches/overlaps O(k) leaves
● gathering leaves O(log n + k)
● Overall → O(log n + k)

https://salzis.wordpress.com/2014/06/28/kd-tree-a
nd-nearest-neighbor-nn-search-2d-case/2D kd Tree Query Analysis

● 1 item is stored per leaf node
● For a query that will collect k items
● Best/Average(?) Case:

An approximately square query
(equal width & height)
● touches/overlaps O(k) leaves
● gathering leaves O(log n + k)
● Overall → O(log n + k)

● Worst Case Query:
For a skinny / lopsided query box
● touches/overlaps - √n +k leaves
● gathering leaves O(√n +k)
● Overall → O(√n + k)

Analysis: 2D kd Tree
Starting with n values..

● Memory to store: → O(n)
● # of leaf nodes: n
● # of intermediate nodes: n-1
● Height of tree: log n

● Time to construct: → O(n log n)
● pre-sort the data, separately in x and in y: O(n log n)
● Alternate axes - place middle value at root,

recurse on the two sublists: O(n log n)
● Time to query: → O(n1/2 + k) = O(√n + k) in worst case

● For search target / output returning k values

Is Query Time = O(√n + k) a problem?

Is Query Time = O(√n + k) a problem?
 O(1) < O(log n) < O(log2 n) < O(√n) < O(n)

Analysis: 3D kd Tree and higher dimensions
Starting with n values..

● Memory to store: → O(n)
● # of leaf nodes: n
● # of intermediate nodes: n-1
● Height of tree: log n

● Time to construct: → O(n log n)
● pre-sort the data, separately in x and in y and in z: O(n log n)
● Rotate through axes (x, y, z, x, …) – place middle value at root,

recurse on two sublists: O(n log n)
● Time to query: → O(n2/3 + k) → O(n(1-1/d) + k) in worst case

● For search target / output returning k values

Is Query Time = O(n(1-1/d) + k) a problem?
 ● Yeah, this is a problem as dimensions increase
● Common for complex databases and typical, interesting queries

All people born 1950-1960,
with salary 3,000-4,000,
who have 2-4 children

With ANY salary…

Becomes a
skinny query

box in one axis!

Outline for Today
● Homework 4 Posted
● Last Time: Bounding Spheres &

Randomized Incremental Construction
● Motivating Application: Database Queries
● Motivating Application: Graphics & Photon Mapping
● Data Structure Choices - Evaluation Criteria

● cost to construct, memory to construct, cost to query
● Review: (1D) Binary Search Trees
● 2D kD Trees & Higher dimension kD Trees
● 2D Range Trees & Higher Dimension Range Trees

What is a Range Tree?
● Idea: If we use more

memory, can we reduce worst
case query time of
kD tree?

● First we organize the
data in a BST by x value

● At every node in the tree,
we store a pointer to a BST
with the same data, but
organized by y value

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

What is a Range Tree?
● Idea: If we use more

memory, can we reduce worst
case query time of
kD tree?

● First we organize the
data in a BST by x value

● At every node in the tree,
we store a pointer to a BST
with the same data, but
organized by y value

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

How to Construct the
2D Range Tree?
How much memory does it use?

How to Construct the
2D Range Tree?
How much memory does it use?

● Each point p is stored once in the level 1
(organized by x) tree

● And many times in level 2 (organized by y) trees
● How many level 2 trees? And how big are they?

● 1 tree with n values
● 2 trees with n/2 values
● 4 trees with n/4 values
● …
● n trees with 1 values

→ O(n) memory for the level 1 tree
→ O(n log n) memory in total for all of the level 2 trees

How to Query
2D Range Tree?

How to Query
2D Range Tree?
● Search through level 1 (blue) tree for

all intermediate nodes that fit completely
inside the query’s x range

For each matched intermediate blue node

● Search through the corresponding
level 2 (green) trees for all nodes
and leaves that fit completely
inside the query’s y range

Return all matching data!

Analysis: 2D Range Tree
Starting with n values..

● Memory to store:

● Time to construct:

● Time to query:

Analysis: 2D Range Tree
Starting with n values..

● Memory to store: → O(n log n)

● Time to construct: → O(n log n)

● Time to query: → O(log2 n + k)

Higher Dimensional
Range Tree
● … and can be extended to

arbitrarily higher dimensions

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

Analysis: 3D kd Tree and higher dimensions
Starting with n values..

● Memory to store:

● Time to construct:

● Time to query:

Analysis: 3D kd Tree and higher dimensions
Starting with n values..

● Memory to store: → O(n logd-1 n)

● Time to construct: → O(n logd-1 n)

● Time to query: → O(log d n + k)

Summary Comparison
● For n points, dimension d, with query to collect k items
● kd tree

● Construction time: → O(n log n)
● Memory: → O(n)
● Query time

● Square(ish) box: → O(log n + k)
● Worst case (long, skinny box): → O(n(1-1/d) + k)

● Range tree
● Construction time → O(n logd-1 n)
● Memory → O(n logd-1 n)
● Query time → O(log d n + k)

Tradeoff:
Use more memory

Faster runtime

Outline for Today
● Homework 4 Posted
● Last Time: Bounding Spheres &

Randomized Incremental Construction
● Motivating Application: Database Queries
● Motivating Application: Graphics & Photon Mapping
● Data Structure Choices - Evaluation Criteria

● cost to construct, memory to construct, cost to query
● Review: (1D) Binary Search Trees
● 2D kD Trees & Higher dimension kD Trees
● 2D Range Trees & Higher Dimension Range Trees

Next Lecture: GPS Point Localization
● Given a 2D coordinate, e.g., a latitude & longitude
● What region of the ocean contains this point?

● Access currents, weather, etc.
NASA Scientific Visualization Studio

https://svs.gsfc.nasa.gov/

