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Lecture 9:  
Point Location & 
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Outline for Today
● Homework 4 Questions?
● Last Time: kD Trees & Range Trees
● Motivating Application: Point Location
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● Brute Force Point Location
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● Trapezoidal Map & Adjacency Structure
● Trapezoidal Map Analysis & Construction
● Think-Outside-of-the-Box Graphics Picking Algorithm
● Next Time: Voronoi Diagram 
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Higher Dimensional Database Queries
● Return all data points with 

x value in 
range [ x0 , x1 ] 
and y value in 
range [ y0 , y1 ] 
and z value in 
range [ z0 , z1 ] 
and …

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

Find all values in an axis parallel box: 
a “rectangular range query” 

a.k.a. “orthogonal range query”

Select all people 
born 1950-1960, 

with salary 
3,000-4,000, 
who have 

2-4 children



Using Photon Map for Rendering
● Find the tightest sphere capturing k photons
● Divide the energy from those photons by 

the surface area covered by that sphere
● What is the best 

data structure 
to store 
millions of 
photons?



2D kd Tree Query Algorithm
● At each split point
● Determine if the 

query box overlaps 
the split line

● Recurse down one 
or both branches 

● If a subtree lies 
complete inside the 
box, return all items 
in that subtree

● Perform filtering in 
the leaves as 
necessary

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 5



https://salzis.wordpress.com/2014/06/28/kd-tree-a
nd-nearest-neighbor-nn-search-2d-case/2D kd Tree Query Analysis

● 1 item is stored per leaf node
● For a query that will collect k items
● Best/Average(?) Case:  

An approximately square query 
(equal width & height) 
● touches/overlaps O(k) leaves
● gathering leaves O(log n + k)
● Overall → O(log n + k)

● Worst Case Query:
For a skinny / lopsided query box 
● touches/overlaps - √n +k leaves
● gathering leaves O(√n +k)
● Overall → O(√n + k)



Is Query Time = O(√n + k) a problem?
 ● O(1)    <    O(log n)    <    O(log2 n)    <    O(√n)    <    O(n)



2D Range Tree
(and higher dimension!)
How much memory does it use?

● Each point p is stored once in the level 1 
(organized by x) tree

● And many times in level 2 (organized by y) trees
● How many level 2 trees?  And how big are they?

● 1 tree with n values
● 2 trees with n/2 values
● 4 trees with n/4 values
● …
● n trees with 1 values

→ O(n log n) memory

BST in x dimension

BST in y dimensionComputational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 5



Summary Comparison
● For n points, dimension d, with query to collect k items
● kd tree

● Construction time:  → O(n log n)
● Memory:  → O(n)
● Query time

● Square(ish) box:  → O(log n + k)
● Worst case (long, skinny box):  → O(n(1-1/d) + k)

● Range tree
● Construction time  → O(n logd-1 n)
● Memory  → O(n logd-1 n)
● Query time  → O(log d n + k)

Tradeoff:
Use more memory

Faster runtime
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Motivation Application: GPS Point Localization
● Given a 2D coordinate, e.g., a latitude & longitude
● What region of the ocean contains this point?

● Access currents, weather, etc.
NASA Scientific Visualization Studio

https://svs.gsfc.nasa.gov/



Graphics / Virtual Reality: What is “Picking”?

• Get the (3D) world coordinates of a (2D) mouse click

• Identify which object was selected and 

the point on the object closest to the click

• Do we as users take 

this for granted??

– What are the 

performance 

bottlenecks?

– What are the 

usability 

concerns? https://www.csit.carleton.ca/~rteather/pdfs/GI_2018_EZCursorVR.pdf



Graphics Application: 3D Painting 

http://www-ui.is.s.u-tokyo.ac.jp/~takeo/gallery/chameleon.png
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“Picking” by Ray Casting
● Construct a ray from the eye through the image plane into the scene
● Intersect with all objects in the scene
● Keep the closest

Concerns:

● Cost of intersection
● How often are 

you asking?
● on click
● continuously

● Position imprecision/noise



Brute Force Picking Algorithm
● Given a planar 

subdivision
● E.g., a collection of 

non-overlapping 
triangles (or polygons) 
that cover the plane

● And a query point Q

● Which triangle/polygon 
is Q inside of?
● E.g., T7 Steve Marschner

http://www.cs.cornell.edu/courses/cs4620

Q



Is Query Point inside a specific Triangle?
● Compare the point to 

each line segment
● Are you on the “right side” of 

all three line segments?  
● Are you on the “wrong side” of 

one or two segments?

● Use cross product!
(more on this later…)

c

a b

Q

Q



Is Query Point inside a specific Triangle?
● Does the half edge adjacency 

data structure accelerate this query? c

a b

Q

Q



Is Query Point inside a specific Triangle?
● Does the half edge adjacency 

data structure accelerate this query?

● Unfortunately… NO!  

● While we can navigate 
to the adjacent neighbors, 
we can NOT do better than 
a O(n) linear floodfill to find 
the correct triangle.

c

a b

Q

Q
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Point Location in 
Planar Subdivision
● Given v vertices, n edges, 

and f polygonal faces
● Which polygonal region 

contains the query point Q?

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 6

Q



Point Location in 
Planar Subdivision
● Given v vertices, n edges, 

and f polygonal faces
● Which polygonal region 

contains the query point Q?
● Let’s slice the plane into 

vertical “slabs” 
● Draw a vertical line through 

every point

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 6

Q



Point Location in 
Planar Subdivision
Let’s assume “General Position”:

● No two points have same x coordinate
● There will be no vertical segments!

● The query point will not be on a vertical 
segment or on a vertex.

● Workaround is to have a tie breaker, 
rotate/shear the diagram a tiny amount Computational Geometry Algorithms and Applications, 

de Berg, Cheong, van Kreveld and Overmars, Chapter 6

Q



Point Location in a Vertical Slab?
● Within this slab, the line segments: 

● Do not cross 
(guaranteed by planar subdivision construction)

● Do not start or stop 
(we’ve split at every vertex)

● We can sort the line segments vertically 
(by left endpoint’s y coordinate)

● Which trapezoid is Q located within?
● Each trapezoid is mapped back 

to the original polygonal face

Q

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 6



Is Query Point above (or below) Line Segment?
● P1x  <  Qx  <  P2x

● Is    0° < Ө < 180°

Q

P1

P2

Ө
(P2 - P1).normalize()

(Q - P1).normalize()



Cross Product
● If the Ө > 0° & Ө < 180°, 

then a x b will be positive 
in the z axis.

● If the Ө > 180° & Ө < 360°, 
then a x b will be negative 
in the z axis.

● If a is parallel to b 
(Ө = 0° or Ө = 180°), 
then a x b will have 
zero magnitude.

● | a x b | = sin Ө
https://en.wikipedia.org/wiki/Cross_product



Analysis: Running Time
● Algorithm Preprocess

 

● Point Location Algorithm
Q



Analysis: Running Time
● Algorithm Preprocess

● Sort slabs left to right 
● Within each slab, sort trapezoids from top to bottom  

● Point Location Algorithm
● Binary search to locate the 

correct slab between two points
● Left vertical x < Qx  < right vertical x   

● Binary search to locate correct trapezoid
● Q is below the upper segment 

and above the lower segment

Q



Analysis: Running Time
● Algorithm Preprocess

● Sort slabs left to right → O(n log n)
● Within each slab, sort trapezoids from top to bottom  

→ O(n log n)
● Point Location Algorithm    Overall: → O(log n)

● Binary search to locate the 
correct slab between two points
● Left vertical x < Qx  < right vertical x   → O(log n)

● Binary search to locate correct trapezoid
● Q is below the upper segment 

and above the lower segment
→ O(log n)

Q

Where n is the # of edges



Analysis: Memory Usage
● Unfortunately, this 

representation is very costly  
● It is redundantly storing 

many faces in many slabs
● In the worst case:

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 6Where n is the # of edges



Analysis: Memory Usage
● Unfortunately, this 

representation is very costly  
● It is redundantly storing 

many faces in many slabs
● In the worst case:

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 6Where n is the # of edges

Euler:     faces  +  vertices  -  edges  = 2
       9 faces + 25 vertices - 32 edges = 2

Created   10 * 8 = 80 trapezoids!!



Analysis: Memory Usage
● Unfortunately, this 

representation is very costly  
● It is redundantly storing 

many faces in many slabs
● In the worst case:

● Every polygon appears 
in nearly every slab!
→ O( n2 )

● Even average/expected case 
is unacceptable:  → O( n √n )

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 6Where n is the # of edges
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Idea:  Reduce 
Redundant Storage

● Horizontally merge 
some of these cells

● Split vertically at 
every vertex

● But stop splitting 
when you reach the 
closest line segment 
above & below

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 6



● This defines a planar 
subdivision with full 
coverage of the plane by 
non-overlapping
● convex trapezoids 

and 
● degenerate 

trapezoids: 
triangles

Create Convex
Trapezoids & Triangles

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 6



● Can we connect these 
triangles and trapezoids 
with a classic half-edge 
adjacency data structure?

Adjacency Structure

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 6



● Can we connect these 
triangles and trapezoids 
with a classic half-edge 
adjacency data structure?

● No!  
● Many of the faces have one or 

more “T junctions” on their top 
and/or bottom edges.  
● This is NOT ALLOWED 

with a traditional polygonal 
planar subdivision /
halfedge data structure

Adjacency Structure

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 6



● Each face points to a half edge
● Each vertex points to a half edge  
● Each half edge points:

● Its opposite edge – only 1!
● Its next edge
● Its face
● Its vertex

● A hacked modification would 
require an array of unknown 
size to point at all “opposite” edges
This would be inefficient and an 
implementation nightmare!

Classic Half-Edge Adjacency Structure

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 6



Trapezoid Map Adjacency Structure
Instead… each trapezoid (or triangle) points to:

● line segment top, makes upper boundary
● line segment bottom, makes lower boundary
● vertex leftp, defines left vertical boundary
● vertex rightp, defines right vertical boundary 

triangle case

Computational Geometry 
Algorithms and Applications, 

de Berg, Cheong, van Kreveld 
and Overmars, Chapter 6



Trapezoid Map Adjacency Structure
Instead… each trapezoid (or triangle) points to:

● line segment top, makes upper boundary
● line segment bottom, makes lower boundary
● vertex leftp, defines left vertical boundary
● vertex rightp, defines right vertical boundary 

Additionally… each trapezoid Δ may have up to 
4 adjacent neighbors (or NULL if they do not exist)

● upper left neighbor, shares top and leftp
● lower left neighbor, shares bottom and leftp
● upper right neighbor, shares top and rightp
● lower right neighbor, shares bottom and rightp

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 6



Trapezoid Map Adjacency Structure
● Does this new adjacency structure allow us 

to navigate through the structure more 
efficiently, faster than a O(n) floodfill for the 
classic polygon adjacency structure?

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 6



Trapezoid Map Adjacency Structure
● Does this new adjacency structure allow us 

to navigate through the structure more 
efficiently, faster than a O(n) floodfill for the 
classic polygon adjacency structure?

● Unfortunately, no…  
● But we can build a binary tree 

(actually a DAG) for this structure 
to perform these queries!

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 6
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What is a “Directed Acyclic Graph” (DAG)?
● A graph (collection of nodes & edges)

● with directed edges, and
● with no directed cycles

● A graph is a DAG if and only if 
● it can be topologically-ordered 

to arrange the vertices in a 
linear sequence such that 
all edges are oriented consistently 
(e.g., flowing from top to bottom)

https://en.wikipedia.org/wiki/Directed_acyclic_graph



Directed Acyclic Graph (DAG)
● Intermediate nodes are vertices (vertical lines) and line segments
● The leaves are the trapezoidal regions (which map back to original polygons)

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 6



Directed Acyclic Graph (DAG)
● Intermediate nodes are vertices (vertical lines) and line segments
● The leaves are the trapezoidal regions (which map back to original polygons)

Q

right of p1

left of q1

below s1

left of p2

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 6



Analysis: Directed Acyclic Graph (DAG)
Size of the DAG?

● # of leaves = # of trapezoids 

● # of intermediate nodes 
= # of vertices + # of line segments 

● Height of DAG 

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 6



Analysis: Directed Acyclic Graph (DAG)
Size of the DAG?

● # of leaves = # of trapezoids 
→  O(n)

● # of intermediate nodes 
= # of vertices + # of line segments 
→  O(n)

● Height of DAG 
→  O(log n)  best case
→  O(n)  worst case

● Use Randomized Incremental 
Construction to achieve height
→ O(log n) expected case!

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 6



Randomized Incremental Construction
● Randomize the order of 

the line segments
● Inserting the segments 

one at a time
● Handle all of the cases

Book has lengthy description 
of the full algorithm & proof!

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 6



Analysis: Directed Acyclic Graph (DAG)
● Memory to store DAG?

→  O(n)
● Height of the DAG?

→  O(log n) expected
● Query time to locate the 

trapezoid/polygon containing 
point Q?
→  O(log n) expected

● Cost to construct?
→  O(n log n) expected

Book has lengthy description 
of the full algorithm & proof!

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 6

Same runtime 
as vertical slabs!

Linear memory usage!
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“Picking” by the Framebuffer
● Graphics “Hack”
● Take advantage of fast 

GPU hardware rendering
● Color each object a 

different, unique color 
(no lighting/shading)

● Grab the color of 
the pixel from the 
framebuffer (object id)

● Grab the z-value (depth) 
from the depth buffer

frame buffer

depth buffer

stencil buffer"Capturing and Animating Occluded Cloth” 
White, Crane, & Forsyth, SIGGRAPH 2007



“Picking” by the Framebuffer
● Are there enough colors?

● Screen Resolution

frame buffer

depth buffer

stencil buffer"Capturing and Animating Occluded Cloth” 
White, Crane, & Forsyth, SIGGRAPH 2007



“Picking” by the Framebuffer
● Are there enough colors?

● 3 colors (RGB) 

w/ 8 bits each

● 282828  =  224  =  

16 million

● Screen Resolution

● “4k” = 4096 x 2160 
= 9 million pixels

● “8k” = 7680 x 4320 
= 33 million pixels

frame buffer

depth buffer

stencil buffer"Capturing and Animating Occluded Cloth” 
White, Crane, & Forsyth, SIGGRAPH 2007



Painting by “Picking” a Picket Fence?

https://www.fencenashville.net/

2D → 3D  & Usability:

● You “click” on a picket 
to start painting

● Move up and down, 
you stay on the picket

● Move left or right, you fall 
between the pickets.  

● Do you hover in 
the air between 
pickets?

● Does your mouse 
z coordinate change?
Do you start painting 
the ground?
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Voronoi Diagram - Social Geography
● There are a bunch of grocery stores 

spread across a large city.
● You’re planning to open another grocery 

store at a specific location.  
● How many customers can you expect at 

the new store location?
Customers will choose the new store 
if it is closer to their home than their 
current store.

● a.k.a. The “Post Office Problem”
Computational Geometry Algorithms and Applications, 

de Berg, Cheong, van Kreveld and Overmars, Chapter 7

actually these are the 
capitals of each province 

in the Netherlands


