
CSCI 4560/6560 Computational Geometry
https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Lecture 9:
Point Location &

Trapezoidal Maps

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Outline for Today
● Homework 4 Questions?
● Last Time: kD Trees & Range Trees
● Motivating Application: Point Location
● Motivating Application: 2D/3D Mouse “Picking” for Graphics
● Brute Force Point Location
● Point Location by Vertical Slab
● Trapezoidal Map & Adjacency Structure
● Trapezoidal Map Analysis & Construction
● Think-Outside-of-the-Box Graphics Picking Algorithm
● Next Time: Voronoi Diagram

Outline for Today
● Homework 4 Questions?
● Last Time: kD Trees & Range Trees
● Motivating Application: Point Location
● Motivating Application: 2D/3D Mouse “Picking” for Graphics
● Brute Force Point Location
● Point Location by Vertical Slab
● Trapezoidal Map & Adjacency Structure
● Trapezoidal Map Analysis & Construction
● Think-Outside-of-the-Box Graphics Picking Algorithm
● Next Time: Voronoi Diagram

Higher Dimensional Database Queries
● Return all data points with

x value in
range [x0 , x1]
and y value in
range [y0 , y1]
and z value in
range [z0 , z1]
and …

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

Find all values in an axis parallel box:
a “rectangular range query”

a.k.a. “orthogonal range query”

Select all people
born 1950-1960,

with salary
3,000-4,000,
who have

2-4 children

Using Photon Map for Rendering
● Find the tightest sphere capturing k photons
● Divide the energy from those photons by

the surface area covered by that sphere
● What is the best

data structure
to store
millions of
photons?

2D kd Tree Query Algorithm
● At each split point
● Determine if the

query box overlaps
the split line

● Recurse down one
or both branches

● If a subtree lies
complete inside the
box, return all items
in that subtree

● Perform filtering in
the leaves as
necessary

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

https://salzis.wordpress.com/2014/06/28/kd-tree-a
nd-nearest-neighbor-nn-search-2d-case/2D kd Tree Query Analysis

● 1 item is stored per leaf node
● For a query that will collect k items
● Best/Average(?) Case:

An approximately square query
(equal width & height)
● touches/overlaps O(k) leaves
● gathering leaves O(log n + k)
● Overall → O(log n + k)

● Worst Case Query:
For a skinny / lopsided query box
● touches/overlaps - √n +k leaves
● gathering leaves O(√n +k)
● Overall → O(√n + k)

Is Query Time = O(√n + k) a problem?
 ● O(1) < O(log n) < O(log2 n) < O(√n) < O(n)

2D Range Tree
(and higher dimension!)
How much memory does it use?

● Each point p is stored once in the level 1
(organized by x) tree

● And many times in level 2 (organized by y) trees
● How many level 2 trees? And how big are they?

● 1 tree with n values
● 2 trees with n/2 values
● 4 trees with n/4 values
● …
● n trees with 1 values

→ O(n log n) memory

BST in x dimension

BST in y dimensionComputational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 5

Summary Comparison
● For n points, dimension d, with query to collect k items
● kd tree

● Construction time: → O(n log n)
● Memory: → O(n)
● Query time

● Square(ish) box: → O(log n + k)
● Worst case (long, skinny box): → O(n(1-1/d) + k)

● Range tree
● Construction time → O(n logd-1 n)
● Memory → O(n logd-1 n)
● Query time → O(log d n + k)

Tradeoff:
Use more memory

Faster runtime

Outline for Today
● Homework 4 Questions?
● Last Time: kD Trees & Range Trees
● Motivating Application: Point Location
● Motivating Application: 2D/3D Mouse “Picking” for Graphics
● Brute Force Point Location
● Point Location by Vertical Slab
● Trapezoidal Map & Adjacency Structure
● Trapezoidal Map Analysis & Construction
● Think-Outside-of-the-Box Graphics Picking Algorithm
● Next Time: Voronoi Diagram

Motivation Application: GPS Point Localization
● Given a 2D coordinate, e.g., a latitude & longitude
● What region of the ocean contains this point?

● Access currents, weather, etc.
NASA Scientific Visualization Studio

https://svs.gsfc.nasa.gov/

Graphics / Virtual Reality: What is “Picking”?

• Get the (3D) world coordinates of a (2D) mouse click

• Identify which object was selected and

the point on the object closest to the click

• Do we as users take

this for granted??

– What are the

performance

bottlenecks?

– What are the

usability

concerns? https://www.csit.carleton.ca/~rteather/pdfs/GI_2018_EZCursorVR.pdf

Graphics Application: 3D Painting

http://www-ui.is.s.u-tokyo.ac.jp/~takeo/gallery/chameleon.png

Outline for Today
● Homework 4 Questions?
● Last Time: kD Trees & Range Trees
● Motivating Application: Point Location
● Motivating Application: 2D/3D Mouse “Picking” for Graphics
● Brute Force Point Location
● Point Location by Vertical Slab
● Trapezoidal Map & Adjacency Structure
● Trapezoidal Map Analysis & Construction
● Think-Outside-of-the-Box Graphics Picking Algorithm
● Next Time: Voronoi Diagram

“Picking” by Ray Casting
● Construct a ray from the eye through the image plane into the scene
● Intersect with all objects in the scene
● Keep the closest

Concerns:

● Cost of intersection
● How often are

you asking?
● on click
● continuously

● Position imprecision/noise

Brute Force Picking Algorithm
● Given a planar

subdivision
● E.g., a collection of

non-overlapping
triangles (or polygons)
that cover the plane

● And a query point Q

● Which triangle/polygon
is Q inside of?
● E.g., T7 Steve Marschner

http://www.cs.cornell.edu/courses/cs4620

Q

Is Query Point inside a specific Triangle?
● Compare the point to

each line segment
● Are you on the “right side” of

all three line segments?
● Are you on the “wrong side” of

one or two segments?

● Use cross product!
(more on this later…)

c

a b

Q

Q

Is Query Point inside a specific Triangle?
● Does the half edge adjacency

data structure accelerate this query? c

a b

Q

Q

Is Query Point inside a specific Triangle?
● Does the half edge adjacency

data structure accelerate this query?

● Unfortunately… NO!

● While we can navigate
to the adjacent neighbors,
we can NOT do better than
a O(n) linear floodfill to find
the correct triangle.

c

a b

Q

Q

Outline for Today
● Homework 4 Questions?
● Last Time: kD Trees & Range Trees
● Motivating Application: Point Location
● Motivating Application: 2D/3D Mouse “Picking” for Graphics
● Brute Force Point Location
● Point Location by Vertical Slab
● Trapezoidal Map & Adjacency Structure
● Trapezoidal Map Analysis & Construction
● Think-Outside-of-the-Box Graphics Picking Algorithm
● Next Time: Voronoi Diagram

Point Location in
Planar Subdivision
● Given v vertices, n edges,

and f polygonal faces
● Which polygonal region

contains the query point Q?

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 6

Q

Point Location in
Planar Subdivision
● Given v vertices, n edges,

and f polygonal faces
● Which polygonal region

contains the query point Q?
● Let’s slice the plane into

vertical “slabs”
● Draw a vertical line through

every point

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 6

Q

Point Location in
Planar Subdivision
Let’s assume “General Position”:

● No two points have same x coordinate
● There will be no vertical segments!

● The query point will not be on a vertical
segment or on a vertex.

● Workaround is to have a tie breaker,
rotate/shear the diagram a tiny amount Computational Geometry Algorithms and Applications,

de Berg, Cheong, van Kreveld and Overmars, Chapter 6

Q

Point Location in a Vertical Slab?
● Within this slab, the line segments:

● Do not cross
(guaranteed by planar subdivision construction)

● Do not start or stop
(we’ve split at every vertex)

● We can sort the line segments vertically
(by left endpoint’s y coordinate)

● Which trapezoid is Q located within?
● Each trapezoid is mapped back

to the original polygonal face

Q

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 6

Is Query Point above (or below) Line Segment?
● P1x < Qx < P2x

● Is 0° < Ө < 180°

Q

P1

P2

Ө
(P2 - P1).normalize()

(Q - P1).normalize()

Cross Product
● If the Ө > 0° & Ө < 180°,

then a x b will be positive
in the z axis.

● If the Ө > 180° & Ө < 360°,
then a x b will be negative
in the z axis.

● If a is parallel to b
(Ө = 0° or Ө = 180°),
then a x b will have
zero magnitude.

● | a x b | = sin Ө
https://en.wikipedia.org/wiki/Cross_product

Analysis: Running Time
● Algorithm Preprocess

● Point Location Algorithm
Q

Analysis: Running Time
● Algorithm Preprocess

● Sort slabs left to right
● Within each slab, sort trapezoids from top to bottom

● Point Location Algorithm
● Binary search to locate the

correct slab between two points
● Left vertical x < Qx < right vertical x

● Binary search to locate correct trapezoid
● Q is below the upper segment

and above the lower segment

Q

Analysis: Running Time
● Algorithm Preprocess

● Sort slabs left to right → O(n log n)
● Within each slab, sort trapezoids from top to bottom

→ O(n log n)
● Point Location Algorithm Overall: → O(log n)

● Binary search to locate the
correct slab between two points
● Left vertical x < Qx < right vertical x → O(log n)

● Binary search to locate correct trapezoid
● Q is below the upper segment

and above the lower segment
→ O(log n)

Q

Where n is the # of edges

Analysis: Memory Usage
● Unfortunately, this

representation is very costly
● It is redundantly storing

many faces in many slabs
● In the worst case:

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 6Where n is the # of edges

Analysis: Memory Usage
● Unfortunately, this

representation is very costly
● It is redundantly storing

many faces in many slabs
● In the worst case:

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 6Where n is the # of edges

Euler: faces + vertices - edges = 2
 9 faces + 25 vertices - 32 edges = 2

Created 10 * 8 = 80 trapezoids!!

Analysis: Memory Usage
● Unfortunately, this

representation is very costly
● It is redundantly storing

many faces in many slabs
● In the worst case:

● Every polygon appears
in nearly every slab!
→ O(n2)

● Even average/expected case
is unacceptable: → O(n √n)

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 6Where n is the # of edges

Outline for Today
● Homework 4 Questions?
● Last Time: kD Trees & Range Trees
● Motivating Application: Point Location
● Motivating Application: 2D/3D Mouse “Picking” for Graphics
● Brute Force Point Location
● Point Location by Vertical Slab
● Trapezoidal Map & Adjacency Structure
● Trapezoidal Map Analysis & Construction
● Think-Outside-of-the-Box Graphics Picking Algorithm
● Next Time: Voronoi Diagram

Idea: Reduce
Redundant Storage

● Horizontally merge
some of these cells

● Split vertically at
every vertex

● But stop splitting
when you reach the
closest line segment
above & below

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 6

● This defines a planar
subdivision with full
coverage of the plane by
non-overlapping
● convex trapezoids

and
● degenerate

trapezoids:
triangles

Create Convex
Trapezoids & Triangles

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 6

● Can we connect these
triangles and trapezoids
with a classic half-edge
adjacency data structure?

Adjacency Structure

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 6

● Can we connect these
triangles and trapezoids
with a classic half-edge
adjacency data structure?

● No!
● Many of the faces have one or

more “T junctions” on their top
and/or bottom edges.
● This is NOT ALLOWED

with a traditional polygonal
planar subdivision /
halfedge data structure

Adjacency Structure

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 6

● Each face points to a half edge
● Each vertex points to a half edge
● Each half edge points:

● Its opposite edge – only 1!
● Its next edge
● Its face
● Its vertex

● A hacked modification would
require an array of unknown
size to point at all “opposite” edges
This would be inefficient and an
implementation nightmare!

Classic Half-Edge Adjacency Structure

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 6

Trapezoid Map Adjacency Structure
Instead… each trapezoid (or triangle) points to:

● line segment top, makes upper boundary
● line segment bottom, makes lower boundary
● vertex leftp, defines left vertical boundary
● vertex rightp, defines right vertical boundary

triangle case

Computational Geometry
Algorithms and Applications,

de Berg, Cheong, van Kreveld
and Overmars, Chapter 6

Trapezoid Map Adjacency Structure
Instead… each trapezoid (or triangle) points to:

● line segment top, makes upper boundary
● line segment bottom, makes lower boundary
● vertex leftp, defines left vertical boundary
● vertex rightp, defines right vertical boundary

Additionally… each trapezoid Δ may have up to
4 adjacent neighbors (or NULL if they do not exist)

● upper left neighbor, shares top and leftp
● lower left neighbor, shares bottom and leftp
● upper right neighbor, shares top and rightp
● lower right neighbor, shares bottom and rightp

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 6

Trapezoid Map Adjacency Structure
● Does this new adjacency structure allow us

to navigate through the structure more
efficiently, faster than a O(n) floodfill for the
classic polygon adjacency structure?

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 6

Trapezoid Map Adjacency Structure
● Does this new adjacency structure allow us

to navigate through the structure more
efficiently, faster than a O(n) floodfill for the
classic polygon adjacency structure?

● Unfortunately, no…
● But we can build a binary tree

(actually a DAG) for this structure
to perform these queries!

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 6

Outline for Today
● Homework 4 Questions?
● Last Time: kD Trees & Range Trees
● Motivating Application: Point Location
● Motivating Application: 2D/3D Mouse “Picking” for Graphics
● Brute Force Point Location
● Point Location by Vertical Slab
● Trapezoidal Map & Adjacency Structure
● Trapezoidal Map Analysis & Construction
● Think-Outside-of-the-Box Graphics Picking Algorithm
● Next Time: Voronoi Diagram

What is a “Directed Acyclic Graph” (DAG)?
● A graph (collection of nodes & edges)

● with directed edges, and
● with no directed cycles

● A graph is a DAG if and only if
● it can be topologically-ordered

to arrange the vertices in a
linear sequence such that
all edges are oriented consistently
(e.g., flowing from top to bottom)

https://en.wikipedia.org/wiki/Directed_acyclic_graph

Directed Acyclic Graph (DAG)
● Intermediate nodes are vertices (vertical lines) and line segments
● The leaves are the trapezoidal regions (which map back to original polygons)

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 6

Directed Acyclic Graph (DAG)
● Intermediate nodes are vertices (vertical lines) and line segments
● The leaves are the trapezoidal regions (which map back to original polygons)

Q

right of p1

left of q1

below s1

left of p2

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 6

Analysis: Directed Acyclic Graph (DAG)
Size of the DAG?

● # of leaves = # of trapezoids

● # of intermediate nodes
= # of vertices + # of line segments

● Height of DAG

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 6

Analysis: Directed Acyclic Graph (DAG)
Size of the DAG?

● # of leaves = # of trapezoids
→ O(n)

● # of intermediate nodes
= # of vertices + # of line segments
→ O(n)

● Height of DAG
→ O(log n) best case
→ O(n) worst case

● Use Randomized Incremental
Construction to achieve height
→ O(log n) expected case!

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 6

Randomized Incremental Construction
● Randomize the order of

the line segments
● Inserting the segments

one at a time
● Handle all of the cases

Book has lengthy description
of the full algorithm & proof!

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 6

Analysis: Directed Acyclic Graph (DAG)
● Memory to store DAG?

→ O(n)
● Height of the DAG?

→ O(log n) expected
● Query time to locate the

trapezoid/polygon containing
point Q?
→ O(log n) expected

● Cost to construct?
→ O(n log n) expected

Book has lengthy description
of the full algorithm & proof!

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 6

Same runtime
as vertical slabs!

Linear memory usage!

Outline for Today
● Homework 4 Questions?
● Last Time: kD Trees & Range Trees
● Motivating Application: Point Location
● Motivating Application: 2D/3D Mouse “Picking” for Graphics
● Brute Force Point Location
● Point Location by Vertical Slab
● Trapezoidal Map & Adjacency Structure
● Trapezoidal Map Analysis & Construction
● Think-Outside-of-the-Box Graphics Picking Algorithm
● Next Time: Voronoi Diagram

“Picking” by the Framebuffer
● Graphics “Hack”
● Take advantage of fast

GPU hardware rendering
● Color each object a

different, unique color
(no lighting/shading)

● Grab the color of
the pixel from the
framebuffer (object id)

● Grab the z-value (depth)
from the depth buffer

frame buffer

depth buffer

stencil buffer"Capturing and Animating Occluded Cloth”
White, Crane, & Forsyth, SIGGRAPH 2007

“Picking” by the Framebuffer
● Are there enough colors?

● Screen Resolution

frame buffer

depth buffer

stencil buffer"Capturing and Animating Occluded Cloth”
White, Crane, & Forsyth, SIGGRAPH 2007

“Picking” by the Framebuffer
● Are there enough colors?

● 3 colors (RGB)

w/ 8 bits each

● 282828 = 224 =

16 million

● Screen Resolution

● “4k” = 4096 x 2160
= 9 million pixels

● “8k” = 7680 x 4320
= 33 million pixels

frame buffer

depth buffer

stencil buffer"Capturing and Animating Occluded Cloth”
White, Crane, & Forsyth, SIGGRAPH 2007

Painting by “Picking” a Picket Fence?

https://www.fencenashville.net/

2D → 3D & Usability:

● You “click” on a picket
to start painting

● Move up and down,
you stay on the picket

● Move left or right, you fall
between the pickets.

● Do you hover in
the air between
pickets?

● Does your mouse
z coordinate change?
Do you start painting
the ground?

Outline for Today
● Homework 4 Questions?
● Last Time: kD Trees & Range Trees
● Motivating Application: Point Location
● Motivating Application: 2D/3D Mouse “Picking” for Graphics
● Brute Force Point Location
● Point Location by Vertical Slab
● Trapezoidal Map & Adjacency Structure
● Trapezoidal Map Analysis & Construction
● Think-Outside-of-the-Box Graphics Picking Algorithm
● Next Time: Voronoi Diagram

Voronoi Diagram - Social Geography
● There are a bunch of grocery stores

spread across a large city.
● You’re planning to open another grocery

store at a specific location.
● How many customers can you expect at

the new store location?
Customers will choose the new store
if it is closer to their home than their
current store.

● a.k.a. The “Post Office Problem”
Computational Geometry Algorithms and Applications,

de Berg, Cheong, van Kreveld and Overmars, Chapter 7

actually these are the
capitals of each province

in the Netherlands

