CSCI 4560/6560 Computational Geometry

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

> Lecture 10: Voronoi Diagrams,
> Part 1

Outline for Today

- Homework 5 Questions?
- Last Time: Point Location \& Trapezoidal Maps
- Motivating Application: Social Geography
- Observations about Voronoi Diagrams
- Brute Force Constructions \& Analysis \& Complexity
- A History of the Names Voronoi/Dirichlet/Thiessen
- How to Graph A Parabola
- Sweep Line Algorithm to Construct a Voronoi Diagram
- Analysis of Sweep Line Algorithm
- Next Time: More Voronoi Diagrams!

Homework 5 - CGAL Programming Task

Outline for Today

- Homework 5 Questions?
- Last Time: Point Location \& Trapezoidal Maps
- Motivating Application: Social Geography
- Observations about Voronoi Diagrams
- Brute Force Constructions \& Analysis \& Complexity
- A History of the Names Voronoi/Dirichlet/Thiessen
- How to Graph A Parabola
- Sweep Line Algorithm to Construct a Voronoi Diagram
- Analysis of Sweep Line Algorithm
- Next Time: More Voronoi Diagrams!

Graphics/VR Application: What is "Picking"?

- Get the (3D) world coordinates of a (2D) mouse click
- Identify which object was selected and the point on the object closest to the click
- Do we as users take this for granted??
- What are the performance bottlenecks?
- What are the usability
concerns?

https://www.csit.carleton.ca/~rteather/pdfs/GI_2018_EZCursorVR.pdf

Brute Force Picking Algorithm

- Given a planar subdivision
- E.g., a collection of non-overlapping triangles (or polygons) that cover the plane
- And a query point Q
- Which triangle/polygon is Q inside of?
- E.g., T_{7}

Point Location in Planar Subdivision

- Given v vertices, n edges, and f polygonal faces
- Which polygonal region contains the query point Q ?

Analysis: Running Time

- Algorithm Preprocess
- Sort slabs left to right $\rightarrow O(n \log n)$
- Within each slab, sort trapezoids from top to bottom $\rightarrow O(n \log n)$
- Point Location Algorithm Overall: $\rightarrow O(\log n)$
- Binary search to locate the correct slab between two points
- Left vertical ${ }_{x}<Q_{x}<$ right vertical $_{x} \rightarrow O(\log n)$
- Binary search to locate correct trapezoid
- Q is below the upper segment and above the lower segment
\rightarrow O(log n)

Directed Acyclic Graph (DAG)

- Intermediate notes are vertices (vertical lines) and line segments
- The leaves are the trapezoidal regions (map back to original polygons)

Analysis: Directed Acyclic Graph (DAG)

Size of the DAG?

- \# of leaves = \# of trapezoids $\rightarrow \mathrm{O}(n)$
- \# of intermediate nodes
= \# of vertices + \# of line segments
$\rightarrow \mathrm{O}(n)$
- Height of DAG
\rightarrow O(log n) best case
\rightarrow O(n) worst case
- Use Randomized Incremental

Construction to achieve height

\rightarrow O(log n) expected case!

Outline for Today

- Homework 5 Questions?
- Last Time: Point Location \& Trapezoidal Maps
- Motivating Application: Social Geography
- Observations about Voronoi Diagrams
- Brute Force Constructions \& Analysis \& Complexity
- A History of the Names Voronoi/Dirichlet/Thiessen
- How to Graph A Parabola
- Sweep Line Algorithm to Construct a Voronoi Diagram
- Analysis of Sweep Line Algorithm
- Next Time: More Voronoi Diagrams!

Voronoi Diagram - Social Geography

- There are a bunch of grocery stores spread across a large city.
- You're planning to open another grocery store at a specific location.
- How many customers can you expect at the new store location?
Customers will choose the new store if it is closer to their home than their current store.
- a.k.a. The "Post Office Problem"

Voronoi Diagram - Social Geography

Assumptions:

- The price of a good is the same at every site.
- The cost of acquiring the good is the price + transportation to the site.
- The cost of transportation is the Euclidean Distance * fixed price per unit distance.
- Consumers try to minimize cost of acquiring the good.

Euclidean Distance

- Euclidean Distance - straight-line distance between two points
- NOT Manhattan Distance only travel along axis aligned roads

- NOT Geodesic Distance - shortest distance between two cities on the globe - via a "great circle"

Outline for Today

- Homework 5 Questions?
- Last Time: Point Location \& Trapezoidal Maps
- Motivating Application: Social Geography
- Observations about Voronoi Diagrams
- Brute Force Constructions \& Analysis \& Complexity
- A History of the Names Voronoi/Dirichlet/Thiessen
- How to Graph A Parabola
- Sweep Line Algorithm to Construct a Voronoi Diagram
- Analysis of Sweep Line Algorithm
- Next Time: More Voronoi Diagrams!

Observation: Perpendicular Bisector

- Points on the edge between two Voronoi cells are equidistant from two Voronoi sites.
- Edges of Voronoi cells are perpendicular bisectors of two Voronoi sites.

Observation: Intersection of Half Spaces

- All points that lie on one side of the perpendicular bisector,
- Are the half-space of points that will chose site A over site B because site A is closer than site B.
- This suggests a brute force construction algorithm...

Observation: Voronoi Cells are Convex

- Because a Voronoi cell is the intersection of half-spaces...
- A Voronoi Cell must be convex
- Note: Some Voronoi Cells are unbounded

What about Collinear Voronoi Sites?

- If all Voronoi sites are collinear - a degenerate configuration...

What about Collinear Voronoi Sites?

- If all Voronoi sites are collinear - a degenerate configuration...
- All Voronoi edges will be parallel lines (unbounded in both directions)
- All Voronoi cells will be unbounded areas

What about Collinear Voronoi Sites?

- If some Voronoi sites are not collinear...
- Every perpendicular bisector will intersect with at least one other perpendicular bisector
- Every Voronoi edge will be bounded
 on one or both directions

Voronoi Diagram has Linear Complexity

- Given n Voronoi sites
- The diagram will have n Voronoi cells cells = faces
- A single Voronoi cell may have many edges - as many as $n-1$
- But by Euler's formula sites \neq vertices $F+V=E+2$
- \# of vertices $\leq 2 n-5$
- \# of edges $\leq 3 n-6$

Voronoi Diagram has Linear Complexity

- For n Voronoi sites $=n$ cells/faces $=F$
- To apply Euler's formula,

$$
F+V=E+2
$$

we V_{∞} to connecting all unbounded edges

- $\quad \Sigma$ all vertex degrees $=2$ * $\mathrm{E} \leq 3^{*}(\mathrm{~V}+1)$
- Every edge touches 2 vertices
- Vertex degree = \# edges that touch vertex
- Minimum vertex degree $=3$
- Substitute \& algebra... \# of vertices $=\mathrm{V} \leq 2 n-5$
$\#$ of edges $=\mathrm{E} \leq 3 n-6$

Outline for Today

- Homework 5 Questions?
- Last Time: Point Location \& Trapezoidal Maps
- Motivating Application: Social Geography
- Observations about Voronoi Diagrams
- Brute Force Constructions \& Analysis \& Complexity
- A History of the Names Voronoi/Dirichlet/Thiessen
- How to Graph A Parabola
- Sweep Line Algorithm to Construct a Voronoi Diagram
- Analysis of Sweep Line Algorithm
- Next Time: More Voronoi Diagrams!

Brute Force Voronoi Algorithm - Analysis

- Given n Voronoi sites

Brute Force Voronoi Algorithm - Analysis

- Given n Voronoi sites
- For every point:
- For every other point:

Construct perpendicular bisector left_edge_C2 between two points, defines a halfspace

- Intersect n-1 half spaces

Divide \& conquer recursion, polygonal Sweep Line overlay

- This is a Voronoi Cell
- Overall:

Brute Force Voronoi Algorithm - Analysis

- Given n Voronoi sites
- For every point: $O(n)$
- For every other point: O(n)

Construct perpendicular bisector left_edge_C2 between two points, defines a halfspace

- Intersect n-1 half spaces

Divide \& conquer recursion, polygonal Sweep Line overlay $\rightarrow O(n \log n)$

- This is a Voronoi Cell
- Overall: $\rightarrow O\left(n^{2} \log n\right)$

Voronoi Vertices

- A Voronoi vertex, q, is the center of a circle that passes through 3 (or more) Voronoi sites and does not contain any other sites inside of it.

Voronoi Vertices

- A Voronoi vertex, q, is the center of a circle that passes through 3 (or more) Voronoi sites and does not contain any other sites inside of it.
- It is also the intersection of 3 (or more) perpendicular bisectors of those Voronoi sites.

Voronoi Vertices

- Alternate Brute Force

Construction algorithm:

- For all triples of Voronoi sites
- If they are not collinear
- Construct the circle

Voronoi Vertices

- Alternate Brute Force

Construction algorithm:

- For all triples of Voronoi sites
- If they are not collinear
- Construct the circle
- Check to see if any other Voronoi site lies within the circle
- If not, keep the circle center as a Voronoi Vertex
- Overall:

Voronoi Vertices

- Alternate Brute Force

Construction algorithm:

- For all triples of Voronoi sites $\mathrm{O}\left(n^{3}\right)$
- If they are not collinear
- Construct the circle
- Check to see if any other Voronoi site lies within the circle $O(n)$
- If not, keep the circle center as a Voronoi Vertex
- Overall: $\rightarrow O\left(n^{4}\right)$

Outline for Today

- Homework 5 Questions?
- Last Time: Point Location \& Trapezoidal Maps
- Motivating Application: Social Geography
- Observations about Voronoi Diagrams
- Brute Force Constructions \& Analysis \& Complexity
- A History of the Names Voronoi/Dirichlet/Thiessen
- How to Graph A Parabola
- Sweep Line Algorithm to Construct a Voronoi Diagram
- Analysis of Sweep Line Algorithm
- Next Time: More Voronoi Diagrams!

A Little History - Voronoi Diagram

https://www.datacamp.com/community/tutorials/markov-chains-python-tutorial

- PhD student, Boris Delaunay (1890-1980):

Delaunay Triangulation - foreshadowing a future topic!

- a.k.a. "Dirichlet Tessellation" (only studied 2D \& 3D?)
- German Mathematician

Peter Gustav Lejeune Dirichlet (1805-1859)

- a.k.a. "Thiessen Polygon"
- Meteorologist Alfred H. Thiessen (1872-1956), born in Troy, NY! (PhD from Cornell)

Thiessen Method - Computing Areal Precipitation

- Rainfall measurements at any station can be applied halfway to the next station in any direction.
- Rainfall is equal to observed rainfall at closest gauge.
- The weight of each rain gauge is computed by the area of the Thiessen Polygon.
- If the amount for any station is missing, the polygon must be changed.
- The Thiessen method is unable to consider orographic differences in rainfall distributions.

From: Encyclopedia of Earth Science, A. H. Schumann

Definition of Orographic: relating to mountains, e.g.,
 resulting from the effects of mountains in forcing moist air to rise.

Outline for Today

- Homework 5 Questions?
- Last Time: Point Location \& Trapezoidal Maps
- Motivating Application: Social Geography
- Observations about Voronoi Diagrams
- Brute Force Constructions \& Analysis \& Complexity
- A History of the Names Voronoi/Dirichlet/Thiessen
- How to Graph A Parabola
- Sweep Line Algorithm to Construct a Voronoi Diagram
- Analysis of Sweep Line Algorithm
- Next Time: More Voronoi Diagrams!

How to Graph a Parabola

All points on
a parabola
are equidistant from
a point, the focus
and
a line, the directrix

How to Graph a Parabola

- Typical parabola equation:

$$
y=a x^{2}+b x+c
$$

- Rewrite as:

$$
(x-h)^{2}=4 p(y-k)
$$

- h gives you the vertical axis of symmetry
- $p \& k$ gives you the focus \& directrix

Outline for Today

- Homework 5 Questions?
- Last Time: Point Location \& Trapezoidal Maps
- Motivating Application: Social Geography
- Observations about Voronoi Diagrams
- Brute Force Constructions \& Analysis \& Complexity
- A History of the Names Voronoi/Dirichlet/Thiessen
- How to Graph A Parabola
- Sweep Line Algorithm to Construct a Voronoi Diagram
- Analysis of Sweep Line Algorithm
- Next Time: More Voronoi Diagrams!

"Fortune's Algorithm"

- Can we do better than $O\left(n^{2} \log n\right)$ construction runtime? Yes!
- "A sweepline algorithm for Voronoi diagrams", Steven Fortune, SoCG 1986
- Sort the Voronoi sites vertically
- Move sweep line from top to bottom
- Region above the "beach line" is known
- Region between the beach line and the sweep line may be impacted by Voronoi sites below the sweep line!

"Beach Line"

- Sequence of parabolic segments.
- Each Voronoi site above the sweep line creates a parabola. site = focus, sweep line = directrix
- Beach line is the lowest point of all of the parabolas for every x value.
- Beach line is x-monotone every vertical line intersects it exactly once.
- Breakpoints - intersection of two parabolic ars - trace edges between two of Voronoi cells.

Computational Geometry Algorithms and Applications,

Sweep line algorithm Voronoi tessellation

Kevin Schaal

https://www.youtube.com/watch?v=k2P9yWSMaXE

Event: New Parabola Appears

- Only happens when the sweep line reaches the next Voronoi Site
- Initially the parabola is degenerate, with width $=0$

New Voronoi Edge

- New Parabolic Arc adds two new breakpoints
- New Voronoi edge is traced between those breakpoints

Event: Parabolic Arc is Absorbed

- Arc disappears when beach line reaches point q, a Voronoi vertex, center of circle that passes through 3 Voronoi sites / parabola foci

Outline for Today

- Homework 5 Questions?
- Last Time: Point Location \& Trapezoidal Maps
- Motivating Application: Social Geography
- Observations about Voronoi Diagrams
- Brute Force Constructions \& Analysis \& Complexity
- A History of the Names Voronoi/Dirichlet/Thiessen
- How to Graph A Parabola
- Sweep Line Algorithm to Construct a Voronoi Diagram
- Analysis of Sweep Line Algorithm
- Next Time: More Voronoi Diagrams!

Sweep Line Algorithm

- For n Voronoi sites
- New Arc Events: Sort Voronoi sites vertically
- Keep a horizontal sorted ordering of the parabolic arcs on the current beachline.
- (Potential) Arc Absorption Events: For each triple of neighboring arcs $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}$ on the beachline, compute
 the circle, and tangent sweep line
- Move sweep line to the next event...
- Overall:

Sweep Line Algorithm

- For n Voronoi sites
- New Arc Events: Sort Voronoi sites vertically $\rightarrow O(n \log n)$
- Keep a horizontal sorted ordering of the parabolic arcs on the current beachline. $2 n$ arcs maximum
- (Potential) Arc Absorption Events: For each triple of neighboring arcs $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}$ on the beachline, compute
 the circle, and tangent sweep line \rightarrow O(n) Voronoi vertices
- Move sweep line to the next event...
- Overall: $\rightarrow O(n \log n)$

Outline for Today

- Homework 5 Questions?
- Last Time: Point Location \& Trapezoidal Maps
- Motivating Application: Social Geography
- Observations about Voronoi Diagrams
- Brute Force Constructions \& Analysis \& Complexity
- A History of the Names Voronoi/Dirichlet/Thiessen
- How to Graph A Parabola
- Sweep Line Algorithm to Construct a Voronoi Diagram
- Analysis of Sweep Line Algorithm
- Next Time: More Voronoi Diagrams!

Next Time: Voronoi Diagram of Line Segments!

