CSCI 4560/6560 Computational Geometry

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Lecture 12:

Voronol Diagrams,
Part 3


https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Outline for Today

Friday Oct 13th: Quiz 1, Logistics

Homework 6 will be posted tomorrow

Last Time: More Voronoi Diagrams

Higher-Order vs Higher Dimension Voronoi Diagrams
Centroidal Voronoi Diagram

K-Means Clustering

Application: Architectural Geometry

More Spatial Query & Search Problems / Applications
Reducing Other Problems to the Voronoi Diagram
Future Topic (after Quiz 1): Delaunay Triangulation



Quiz 1

e In class, Friday Oct 13th, 2-3:50pm

e Will involve simple sketching, you are welcome (but not required)
to bring colored pencils/markers/crayons/etc.

e 1 double-sided page of notes allowed. Itis NOT open book.

You may complete the quiz entirely on paper — OR —
Do the sketching problem(s) on paper and use your laptop and type
the written answers in a simple text file and upload to Submitty.

e We need a volunteer to pick up the quizzes from
Shannon (Lally 207) Friday morning/early afternoon &
slide under my office door (Lally 302) after the quiz?
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Voronoi Diagram of Line Segments

e Points equidistant between
two points form a line.

e Points equidistant between
a point and a line form a
parabola.

e Points equidistant between
two lines form a line.

. .

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 7



Sweep Line: More Complicated Beach Front

e Fortunately, the complexity (# of segments) is still O(n) in the size
of the input — now line segments instead of just points!

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 7



Application: Robotics & Motion Planning

e Step 1: Project robot
center to closest
Voronol edge.

e Step 2: Remove
Voronoi edges from
diagram graph where
smallest distance to
segment < radius.

e Step 3: Search the
remaining graph
for a connected path
from start to end. Computational Geometry Algorithms and Applications,

de Berg, Cheong, van Kreveld and Overmars, Chapter 7




Voronoi Cell: Intersection of Half Spaces !
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Definition: Farthest Point VVoronoi Cell :'
N \
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Farthest-Point Voronoi Diagram

e Observation: Only sites on the
convex hull will have a cell in the
farthest point diagram.

e Observation: All farthest-point
cells are unbounded.

e Observation: The diagram is
a tree — no cycles!
If there were a cycle, that would selliof
mean we had a bounded cell. ew(p;)

cell of p;

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 7



Finding the Smallest-Width Annulus

e Easy to compute once we know the center
(it is the center of both the inner & outer circle)
e What points might be the center? Any point on the plane?

g PDRHE
de Berg, Cheong, van Kreveld an{ ©vgrmars, Chapter 7



Finding the Smallest-Width Annulus

e Easy to compute once we know the center
(it is the center of both the inner & outer C|rcle)
e What points might be the center?
It must be:
e A vertex of the Voronoi Diagram
(equally close to 3 sites) OR
e A vertex of the Farthest Point Voronoi
Diagram (equally far from 3 sites) OR
e An intersection of the Voronoi Diagram
and Farthest Point Voronoi Diagram -~
(equally close to 2 sites AND
equally far from 2 sites)

Computational Geometry Algorithms and Applicatiohs,
de Berg, Cheong, van Kreveld and Overmars, Chapter 7 \
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Finding the Smallest-Width Annulus

e Easy to compute once we know the center
(it is the center of both the inner & outer cirgle)
e What points might be the center?
It must be:
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Brute force check

Finding the Smallest-Width Annulus of O(n) = a FINITE

e Easy to compute once we know the center
(it is the center of both the inner & outer C|rQIe)
e What points might be the center?
It must be:

number of possible
center positions

A vertex of the Voronoi Diagram
(equally close to 3 sites) OR

A vertex of the Farthest Point Voronoi
Diagram (equally far from 3 sites) OR
An intersection of the Voronoi Diagram
and Farthest Point Voronoi Diagram
(equally close to 2 sites AND

equally far from 2 sites)

Computational Geometry Algorithms and Applicatiohs,
de Berg, Cheong, van Kreveld and Overmars, Chapter 7 \



Outline for Today

Friday Oct 13th: Quiz 1, Logistics

Homework 6 will be posted tomorrow

Last Time: More Voronoi Diagrams

Higher-Order vs Higher Dimension Voronoi Diagrams
Centroidal Voronoi Diagram

K-Means Clustering

Application: Architectural Geometry

More Spatial Query & Search Problems / Applications
Reducing Other Problems to the Voronoi Diagram
Future Topic (after Quiz 1): Delaunay Triangulation



Higher-Order Voronoi / k-Closest Sites

e Forexample, k =2... \

e Subdivide the plane
into regions that have
the same closest and
second closest sites

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 7



Voronoi Diagram in 3D or Higher Dimension

e Not the same as “Higher-Order Voronoi Diagram”
e \Well defined in higher dimensions, but hard to visualize & debug!
e Each Voronoi cell is convex!
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“Efficient Computation of Clipped “Simulation and Optimization of Porous Bone-Like
Voronoi Diagrams for Mesh Generation”, Microstructures with Specific Mechanical Properties”,
Yan, Wang, & Liu, 2011 Wit, Wronski, & Tarasiuk, 2019
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Centroidal Voronoi Diagram

e What if we could place all of the grocery stores?
e \Where should we place the grocery stores so that
they are centrally located for all of their customers?

https://en.wikipedia.org/wiki/Centroidal_Voronoi_tessellation



Centroidal Voronoi Diagram

e What if we could place all of the grocery stores?
e \Where should we place the grocery stores so that
they are centrally located for all of their customers?

e But if you change the position of the store, the closest S UG
store will change for some customers... - -
e Points are at the center of mass of their cell
e Constructed using k-means clustering /
Lloyd’s algorithm - an iterative relaxation algorithm +

e Note: May be multiple solutions!

https://en.wikipedia.org/wiki/Centroidal_Voronoi_tessellation
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K-Means Clustering

e \Works quite well, when the data can be meaningfully classified
(and we know how many clusters to use).

e With dense data, output is visually similar to Voronoi diagram
(k-Means chooses the data points that define the cells)
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http://blog.mpacula.com/2011/04/27/k-means-clustering-example-python/ "Efficient K-Means Clustering using JIT" Yi Cao



K-Means Clustering
For a set of 2D/3D/nD points:

e Choose k, # of clusters (maybe an “oracle” tells us...)

e Select k points from your data at random
as initial team representatives

e Every other point determines which team
representative it is closest to and joins that team

e The team averages the positions of all members,
this is the team’s new representative

e Repeat x times or until change < threshold

Same/Similar to: Lloyd’s Algorithm




(c)

(b)

(a)

()

(e)

Wei Zhang
https://wei2624.github.io/MachineLearning/usv_kmeans/

(d)
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The Problem: Mesh this curved surface so that it can
be constructed from glass for
a rooftop greenhouse.

Q‘ﬂ\\\\\\‘\m
- VBN

Mark Goulthorpe, MIT, dECOi



i

Great Court at the British Museum

London, England
Norman Foster and Partners, 2000.

Chadstone Shopping Center
Melbourne, Australia
RTKL Associates Inc, 1999.



“Voronoi Surfaces”

)

Unfortunately, )«

the cell vertices
are rarely planar!

Mike Powell, MIT
Studio Project Fall 2004




We’re no longer using

Voronoi Diagram on a 3D Surface Euclidean Distance!

section
(side view)

plan
(top view)




“Saddle Surface” — Non-Convex Facets
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Focus / Goals:
e Structural feasibility / efficiency
e Improve planarity of faces
(but not guaranteed)
e Symmetry and similarity in face
area, edge length

“Voronoi Grid-Shell Structures”
Pietroni, Tonelli, Puppo, Froli,
Scopigno, & Cignoni, 2014



“Geometric Modeling with Conical Meshes and Developable Surfaces”
Liu, Pottmann, Wallner, Yang &Wang, SIGGRAPH 2006




Voronoi Diagram in Nature

o

https://spring-of-mathematics.tumblr.com/ https://blogs.scientificamerican.com/
post/85519358219/the-beauty-of-voronoi- observations/voronoi-tessellations-and-
diagram-in-nature-how scutoids-are-everywhere/




https://en.wikipedia.org/wiki/
Worley_noise#/media/File:Worley.jpg

Cellular Textures

“A Cellular Texture Basis Function”,
Worley, SIGGRAPH 1996




Image by Justin Legakis
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Problems that Reduce to Voronoi Diagram

e We can compute the g EMENT UNIQUENESS —— CLOSEST PAIR (P1)

el N
Voronoi Diagram of LN
n points in O(n log n) N ALL NEAREST
: NEIGHBORS (P2)
time and O(n) space. N EMST (R3)-—--- —=S N
e These other N
N N ,_VORONOI
ULATION (P4)—>
oroblems can be SORTING — > TRIANG N DIAGRAM
computed Iin NT
O(n) additional ORDERED CONVEXHULL
time if given the roparata & Shamos, 1935, Figurs 6.30

Voronoi Diagram.
e Therefore they are also O(n log n) time and O(n) space.



Problem: All Nearest Neighbors

e Connect every point to
its nearest point with
a directed edge.

e Some points form a
reciprocal pair.

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.1



Problem: All Nearest Neighbors

e Connect every point to
its nearest point with
a directed edge. ;
e Some points form a
reciprocal pair.
e Simple Algorithm:
Compare each point to
every other point
e Runtime: O(n?)
e Additional Memory
(ignoring input & output): O(1)

N

Computational Geometry: An Introduction,

Can we do better? Yes_’ Preparata & Shamos, 1985, Figure 5.1



Problem: Closest Pair

e \Which two points are
the closest?
e Applications - Collision
Detection & Air Traffic Control
e Which two objects
have soonest potential
for collision?

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.1



Problem: Closest Pair

e \Which two points are
the closest?

e Applications - Collision
Detection & Air Traffic Control
e Which two objects
have soonest potential
for collision?
e Algorithm: O(n) Linear loop
over all edges in the
All Nearest Neighbors solution Q
to find the shortest edge

o VV|” be da reCIprocal palr Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.1



Problem: Unigueness

e Given n numbers
(or n 2D/3D/etc points),
decide if any two are identical
(if not... all items are unique).

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.1



Problem: Uniqueness

e Given n numbers
(or n 2D/3D/etc points),
decide if any two are identical
(if not... all items are unique).

e O(n) Linear loop over :
all edges in the
All Nearest Neighbors
solution to check if any
edges are length zero.

N

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.1



Problem: Euclidean Minimum Spanning Tree

e Given n points
e Draw n-1 edges to create

a tree, connecting all J‘
points without creating

any cycles. #
e Pick edges to minimize
the sum of their lengths.

Figure 5.2 A minimum spanning tree on a planar point set.

e Application:
Minimize cost of physical oraparata § Shamos, 1985, Figura 5.2
power/data lines



A Different Problem: Minimum Spanning Tree

General (non-Euclidean)
MST from Graph Theory

e Each edge has a weight, \>

not necessarily the #
Euclidean distance
between two points

e \Worst case, may have

=7 -
a4 edges to consider Figure 5.2 A minimum spanning tree on a planar point set.
e Runtime O(m log n)
Computational Geometry: An Introduction,

O(n2 log n) WO rSt Case Preparata & Shamos, 1985, Figure 5.2



A Different Problem: (Euclidean) Steiner Tree

e If allowed to add additional points — so-called Steiner Points
e Minimize sum of Euclidean distance edge lengths
e Computing the Steiner Tree is NP Complete / NP hard!

(a) (b)

Figure 5.3 A Steiner Tree (b) may have smaller total length than the MST (a).

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.3
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Reduce Convex Hull to Voronoi Diagram

Theorem: Voronoi polygon V.

is unbounded if and only if
Voronoi site i is on the convex

hull of all sites. (proved in Preparata & Shamos)

Figure 5.31 Construction of the convex hull from the Voronoi diagram.

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.31



Reduce Convex Hull to Voronoi Diagram

Theorem: Voronoi polygon V.

is unbounded if and only if
Voronoi site i is on the convex

hull of all sites. (proved in Preparata & Shamos)

O(n) to convert Voronoi Diagram
solution to Convex Hull:

e Start with any unbounded cell
e \Walk edges clockwise to find
adjacent unbounded cell

e \oronoi sites will
trace convex hull in
counter-clockwise order

Figure 5.31 Construction of the convex hull from the Voronoi diagram.

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.31



Reduce All Nearest Neighbors to Voronoi Diagram

e For n Voronoi Sites

e ByEuler'sformula: F+V=E+2
e # of Voronoi edges < 3n-6 \
e Theorem: Every nearest neighbor

in the set of Voronoi sites defines

an edge of a Voronoi polygon.
(proved in Preparata & Shamos)

Conjputational Geometry: An Introduction,
Pfeparata & Shamos, 1985, Figure 5.1




Reduce All Nearest Neighbors to Voronoi Diagram

e For n Voronoi Sites

e ByEuler'sformula: F+V=E+2
e # of Voronoi edges < 3n-6 \
e Theorem: Every nearest neighbor

in the set of Voronoi sites defines

an edge of a Voronoi polygon.
(proved in Preparata & Shamos)

e O(n) to convert Voronoi Diagram
solution to All Nearest Neighbors
e For every Voronoi polygon, loop over all
Voronoi edges, & select adjacent site that is closest
e What if some cells have a huge # of edges?
Every Voronoi edge will be considered twice o .1



Problems that Reduce to Voronoi Diagram
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Reduce EMST to Voronoi Diagram

e All Nearest Neighbors will
have one or more cycles
reciprocal pair(s)

e Remove one edge from
each cycle

e All Nearest Neighbors may
be disconnected

e A forest of trees

e Core challenge: Find
and add shortest edge
between disconnected
trees in the forest... S Pranarts & Shados, 1085, Figure 5.1




Kruskal's and Prim’s Algorithm for MST

Did you cover this in Introduction to Algorithms and/or Graph Theory?

e Kruskal's - O(E log E)
e maintain a set of trees
e find the shortest edge that merges two trees
e repeat until there is only a single tree
e Prim's - O(E + Vlog V)
e maintain one tree, and all unconnected vertices
e find the shortest edge from the tree to an unconnected vertex
e repeat until there are no unconnected vertices

For a general (non-Euclidean) MST, we may have to consider O(n?) edges worst case.
For the Euclidean MST, we only need to consider the O(n) Voronoi/Delaunay edges.



Problems that Reduce to Voronoi Diagram

o We can compute the g EMENT UNIQUENESS — CLOSEST PAIR (P1)

el N
Voronoi Diagram of LN
n points in O(n log n) N ALL NEAREST
: NEIGHBORS (P2)
time and O(n) space. N EMST (93)—-1;,7;53\ N

e These other o - N VORONO!

NGULATION (P4)—>

oroblems can be SORTING — > TRIANG N DIAGRAM
computed Iin NT
O(n) additional ORDERED CONVEXHULL
time if given the raparata & Shamos, 1665, Figure 530

Voronoi Diagram.
e Therefore they are also O(n log n) time and O(n) space.



Problems that Reduce to Voronoi Diagram

o We can compute the g EMENT UNIQUENESS — CLOSEST PAIR (P1)

Y, N
Voronoi Diagram of N
n points in O(n log n) N ALL NEAREST
. NEIGHBORS (P2)
time and O(n) space. EMST (RP3)-—-—- —=sg lN
N N log N ">«
® The =t N N VORONO!
———»TRIANGULATION (P4)—>
Because UNIQUENESS SORTING . DIAGRAM
and SORTING are NT
lower bound Q(n log n)... ORDERED CONVEX HULL
VORONOI DIAGRAM | |
. Computational Geometry: An Introduction,
IS aISO Q(n |Og n) Preparata & Shamos, 1985, Figure 5.30
VoI . -

e Therefore they are also O(n log n) time and O(n) space.
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Next Time: Delaunay Triangulation!

e The Voronoi Diagram (VD)
is the dual of the
Delaunay Triangulation (DT)
e Every Voronoi Site is
a face in Voronoi Diagram
and a vertex in the DT
e Every Voronoi Edge is
an edge in the DT
e Every Voronoi Vertex
is a triangle in the DT

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.21



