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Lecture 12:  
Voronoi Diagrams,

Part 3
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Outline for Today
● Friday Oct 13th: Quiz 1, Logistics
● Homework 6 will be posted tomorrow
● Last Time: More Voronoi Diagrams
● Higher-Order vs Higher Dimension Voronoi Diagrams
● Centroidal Voronoi Diagram
● K-Means Clustering
● Application: Architectural Geometry
● More Spatial Query & Search Problems / Applications
● Reducing Other Problems to the Voronoi Diagram
● Future Topic (after Quiz 1): Delaunay Triangulation 



Quiz 1
● In class, Friday Oct 13th, 2-3:50pm
● Will involve simple sketching, you are welcome (but not required) 

to bring colored pencils/markers/crayons/etc.
● 1 double-sided page of notes allowed.  It is NOT open book.

● You may complete the quiz entirely on paper  – OR –
● Do the sketching problem(s) on paper and use your laptop and type 

the written answers in a simple text file and upload to Submitty.

● We need a volunteer to pick up the quizzes from 
Shannon (Lally 207) Friday morning/early afternoon & 
slide under my office door (Lally 302) after the quiz?
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Voronoi Diagram of Line Segments
● Points equidistant between 

two points form a line.

● Points equidistant between 
a point and a line form a 
parabola.

● Points equidistant between 
two lines form a line.

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 7



Sweep Line: More Complicated Beach Front
● Fortunately, the complexity (# of segments) is still O(n) in the size 

of the input – now line segments instead of just points!

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 7



Application: Robotics & Motion Planning
● Step 1: Project robot 

center to closest 
Voronoi edge.

● Step 2: Remove 
Voronoi edges from 
diagram graph where 
smallest distance to 
segment < radius.

● Step 3: Search the 
remaining graph 
for a connected path 
from start to end. Computational Geometry Algorithms and Applications, 

de Berg, Cheong, van Kreveld and Overmars, Chapter 7



Voronoi Cell: Intersection of Half Spaces
● The intersection of these half-spaces 

is the  Voronoi Cell 
for A – all points that choose A as 
their closest Voronoi site.

A



Definition: Farthest Point Voronoi Cell
● The intersection of these half-spaces 

is the  Voronoi Cell 
for A – all points that choose A as 
their closest Voronoi site.

● The intersection of the opposite 
half-space is the Farthest Point 
Voronoi Cell - all points that indicate 
that A is their furthest Voronoi site.

A

farthest 
from A



Farthest-Point Voronoi Diagram
● Observation: Only sites on the 

convex hull will have a cell in the 
farthest point diagram.

● Observation: All farthest-point 
cells are unbounded.

● Observation: The diagram is 
a tree – no cycles!  
If there were a cycle, that would 
mean we had a bounded cell.

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 7



Finding the Smallest-Width Annulus
● Easy to compute once we know the center 

(it is the center of both the inner & outer circle)
● What points might be the center?  Any point on the plane?

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 7



Finding the Smallest-Width Annulus
● Easy to compute once we know the center 

(it is the center of both the inner & outer circle)
● What points might be the center?  

It must be:
● A vertex of the Voronoi Diagram 

(equally close to 3 sites)  OR
● A vertex of the Farthest Point Voronoi 

Diagram (equally far from 3 sites)  OR
● An intersection of the Voronoi Diagram 

and Farthest Point Voronoi Diagram
(equally close to 2 sites AND
equally far from 2 sites)

Computational Geometry Algorithms and Applications, 
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Finding the Smallest-Width Annulus
● Easy to compute once we know the center 

(it is the center of both the inner & outer circle)
● What points might be the center?  

It must be:
● A vertex of the Voronoi Diagram 

(equally close to 3 sites)  OR
● A vertex of the Farthest Point Voronoi 

Diagram (equally far from 3 sites)  OR
● An intersection of the Voronoi Diagram 

and Farthest Point Voronoi Diagram
(equally close to 2 sites AND
equally far from 2 sites)

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 7

Brute force check
 of O(n) = a FINITE 
number of possible 

center positions



Outline for Today
● Friday Oct 13th: Quiz 1, Logistics
● Homework 6 will be posted tomorrow
● Last Time: More Voronoi Diagrams
● Higher-Order vs Higher Dimension Voronoi Diagrams
● Centroidal Voronoi Diagram
● K-Means Clustering
● Application: Architectural Geometry
● More Spatial Query & Search Problems / Applications
● Reducing Other Problems to the Voronoi Diagram
● Future Topic (after Quiz 1): Delaunay Triangulation 



Higher-Order Voronoi / k-Closest Sites
● For example, k = 2…

● Subdivide the plane 
into regions that have 
the same closest and 
second closest sites

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 7



Voronoi Diagram in 3D or Higher Dimension

“Simulation and Optimization of Porous Bone-Like 
Microstructures with Specific Mechanical Properties”,

Wit, Wronski, & Tarasiuk, 2019

“Efficient Computation of Clipped 
Voronoi Diagrams for Mesh Generation”, 

Yan, Wang, & Liu, 2011

● Not the same as “Higher-Order Voronoi Diagram”
● Well defined in higher dimensions, but hard to visualize & debug!
● Each Voronoi cell is convex!
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Centroidal Voronoi Diagram
● What if we could place all of the grocery stores?
● Where should we place the grocery stores so that 

they are centrally located for all of their customers?

https://en.wikipedia.org/wiki/Centroidal_Voronoi_tessellation



Centroidal Voronoi Diagram
● What if we could place all of the grocery stores?
● Where should we place the grocery stores so that 

they are centrally located for all of their customers?
● But if you change the position of the store, the closest 

store will change for some customers…

● Points are at the center of mass of their cell
● Constructed using k-means clustering / 

Lloyd’s algorithm - an iterative relaxation algorithm

● Note: May be multiple solutions!

https://en.wikipedia.org/wiki/Centroidal_Voronoi_tessellation
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K-Means Clustering
● Works quite well, when the data can be meaningfully classified 

(and we know how many clusters to use).
● With dense data, output is visually similar to Voronoi diagram

(k-Means chooses the data points that define the cells)

http://blog.mpacula.com/2011/04/27/k-means-clustering-example-python/ "Efficient K-Means Clustering using JIT"  Yi Cao



K-Means Clustering
For a set of 2D/3D/nD points:

● Choose k, # of clusters (maybe an “oracle” tells us...)
● Select k points from your data at random 

as initial team representatives
● Every other point determines which team 

representative it is closest to and joins that team
● The team averages the positions of all members, 

this is the team’s new representative
● Repeat x times or until change < threshold

Same/Similar to: Lloyd’s Algorithm



Wei Zhang
https://wei2624.github.io/MachineLearning/usv_kmeans/
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The Problem: Mesh this curved surface so that it can 
be constructed from glass for
a rooftop greenhouse.

Mark Goulthorpe, MIT, dECOi



Chadstone Shopping Center
Melbourne, Australia

RTKL Associates Inc, 1999.

Great Court at the British Museum
London, England

Norman Foster and Partners, 2000.



“Voronoi Surfaces”

Unfortunately, 
the cell vertices 

are rarely planar!Mike Powell, MIT
Studio Project Fall 2004



Voronoi Diagram on a 3D Surface
We’re no longer using 
Euclidean Distance!



“Saddle Surface” → Non-Convex Facets

“bowtie” 
shapes



Fabrication 





Additional work 
necessary to meet 

constraints of 
glass construction

“Constrained Planar 
Remeshing for Architecture”, 

Cutler & Whiting, 2007



“Voronoi Grid-Shell Structures”
Pietroni, Tonelli, Puppo, Froli, 

Scopigno, & Cignoni, 2014

Focus / Goals:
● Structural feasibility / efficiency
● Improve planarity of faces 

(but not guaranteed)
● Symmetry and similarity in face 

area, edge length 



“Geometric Modeling with Conical Meshes and Developable Surfaces”
Liu, Pottmann, Wallner, Yang &Wang, SIGGRAPH 2006



Voronoi Diagram in Nature

https://blogs.scientificamerican.com/
observations/voronoi-tessellations-and-

scutoids-are-everywhere/

https://spring-of-mathematics.tumblr.com/
post/85519358219/the-beauty-of-voronoi-

diagram-in-nature-how



Cellular Textures

“A Cellular Texture Basis Function”, 
Worley, SIGGRAPH 1996

https://en.wikipedia.org/wiki/
Worley_noise#/media/File:Worley.jpg



Image by Justin Legakis
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Problems that Reduce to Voronoi Diagram
● We can compute the 

Voronoi Diagram of 
n points in O(n log n) 
time and O(n) space.  

● These other 
problems can be 
computed in 
O(n) additional 
time if given the 
Voronoi Diagram.  

● Therefore they are also O(n log n) time and O(n) space.

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.30



Problem: All Nearest Neighbors
● Connect every point to 

its nearest point with 
a directed edge.

● Some points form a 
reciprocal pair.

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.1



Problem: All Nearest Neighbors
● Connect every point to 

its nearest point with 
a directed edge.

● Some points form a 
reciprocal pair.

● Simple Algorithm:
Compare each point to 
every other point

● Runtime: O(n2)
● Additional Memory

(ignoring input & output): O(1)

Can we do better?   Yes!
Computational Geometry: An Introduction,

Preparata & Shamos, 1985, Figure 5.1



Problem: Closest Pair

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.1

● Which two points are 
the closest?

● Applications - Collision 
Detection & Air Traffic Control  

● Which two objects 
have soonest potential 
for collision?



Problem: Closest Pair

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.1

● Which two points are 
the closest?

● Applications - Collision 
Detection & Air Traffic Control  

● Which two objects 
have soonest potential 
for collision?

● Algorithm: O(n) Linear loop 
over all edges in the 
All Nearest Neighbors solution 
to find the shortest edge 

● Will be a reciprocal pair



Problem: Uniqueness

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.1

● Given n numbers 
(or n 2D/3D/etc points),
decide if any two are identical 
(if not… all items are unique).



Problem: Uniqueness

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.1

● Given n numbers
(or n 2D/3D/etc points),
decide if any two are identical 
(if not… all items are unique).

● O(n) Linear loop over 
all edges in the 
All Nearest Neighbors 
solution to check if any 
edges are length zero.



Problem: Euclidean Minimum Spanning Tree
● Given n points
● Draw n-1 edges to create 

a tree, connecting all 
points without creating 
any cycles.

● Pick edges to minimize 
the sum of their lengths.

● Application: 
Minimize cost of physical 
power/data lines

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.2



A Different Problem: Minimum Spanning Tree
General (non-Euclidean) 
MST from Graph Theory

● Each edge has a weight, 
not necessarily the 
Euclidean distance 
between two points

● Worst case, may have 
m = n2 edges to consider 

● Runtime O(m log n)
O(n2 log n) worst case

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.2



A Different Problem: (Euclidean) Steiner Tree
● If allowed to add additional points – so-called Steiner Points
● Minimize sum of Euclidean distance edge lengths
● Computing the Steiner Tree is NP Complete / NP hard!

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.3



Problems that Reduce to Voronoi Diagram
● We can compute the 

Voronoi Diagram of 
n points in O(n log n) 
time and O(n) space.  

● These other 
problems can be 
computed in 
O(n) additional 
time if given the 
Voronoi Diagram.  

● Therefore they are also O(n log n) time and O(n) space.

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.30



Reduce Convex Hull to Voronoi Diagram
● Theorem: Voronoi polygon Vi 

is unbounded if and only if 
Voronoi site i is on the convex 
hull of all sites. (proved in Preparata & Shamos)

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.31



Reduce Convex Hull to Voronoi Diagram
● Theorem: Voronoi polygon Vi 

is unbounded if and only if 
Voronoi site i is on the convex 
hull of all sites. (proved in Preparata & Shamos)

● O(n) to convert Voronoi Diagram 
solution to Convex Hull:
● Start with any unbounded cell
● Walk edges clockwise to find 

adjacent unbounded cell
● Voronoi sites will 

trace convex hull in 
counter-clockwise order

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.31



Reduce All Nearest Neighbors to Voronoi Diagram
● For n Voronoi Sites
● By Euler’s formula: F + V = E + 2

● # of Voronoi edges ≤ 3n-6
● Theorem: Every nearest neighbor 

in the set of Voronoi sites defines 
an edge of a Voronoi polygon.
(proved in Preparata & Shamos)

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.1



Reduce All Nearest Neighbors to Voronoi Diagram
● For n Voronoi Sites
● By Euler’s formula: F + V = E + 2

● # of Voronoi edges ≤ 3n-6
● Theorem: Every nearest neighbor 

in the set of Voronoi sites defines 
an edge of a Voronoi polygon.
(proved in Preparata & Shamos)

● O(n) to convert Voronoi Diagram 
solution to All Nearest Neighbors
● For every Voronoi polygon, loop over all 

Voronoi edges, & select adjacent site that is closest
● What if some cells have a huge # of edges?  

Every Voronoi edge will be considered twice Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.1



Problems that Reduce to Voronoi Diagram
● We can compute the 

Voronoi Diagram of 
n points in O(n log n) 
time and O(n) space.  

● These other 
problems can be 
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O(n) additional 
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Reduce EMST to Voronoi Diagram
● All Nearest Neighbors will 

have one or more cycles 
reciprocal pair(s)
● Remove one edge from 

each cycle
● All Nearest Neighbors may 

be disconnected 
● A forest of trees

● Core challenge: Find 
and add shortest edge 
between disconnected 
trees in the forest… Computational Geometry: An Introduction,

Preparata & Shamos, 1985, Figure 5.1



Kruskal’s and Prim’s Algorithm for MST
Did you cover this in Introduction to Algorithms and/or Graph Theory?

● Kruskal’s  -  O(E log E)
● maintain a set of trees
● find the shortest edge that merges two trees
● repeat until there is only a single tree

● Prim’s  -  O(E + V log V)
● maintain one tree, and all unconnected vertices
● find the shortest edge from the tree to an unconnected vertex
● repeat until there are no unconnected vertices

For a general (non-Euclidean) MST, we may have to consider O(n2) edges worst case.  
For the Euclidean MST, we only need to consider the O(n) Voronoi/Delaunay edges.
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N log N
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time and O(n) space.  
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N log N

Because UNIQUENESS 
and SORTING are 

lower bound Ω(n log n)... 
VORONOI DIAGRAM 

is also Ω(n log n)
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Next Time: Delaunay Triangulation!
● The Voronoi Diagram (VD) 

is the dual of the 
Delaunay Triangulation (DT)

● Every Voronoi Site is 
a face in Voronoi Diagram 
and a vertex in the DT

● Every Voronoi Edge is 
an edge in the DT

● Every Voronoi Vertex 
is a triangle in the DT

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.21


