CSCI 4560/6560 Computational Geometry

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Lecture 13: Arrangements & Duality

Outline for Today

- Homework 5 Questions?
- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points ↔ Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

K-Means Clustering

- Works quite well, when the data can be meaningfully classified (and we know how many clusters to use).
- With dense data, output is visually similar to Voronoi diagram (k-Means chooses the data points that define the cells)

"Efficient K-Means Clustering using JIT" Yi Cao

Centroidal Voronoi Diagram

- What if we could place all of the grocery stores?
- Where should we place the grocery stores so that they are centrally located for all of their customers?
- But if you change the position of the store, the closest store will change for some customers...
- Points are at the center of mass of their cell
- Constructed using k-means clustering / Lloyd's algorithm - an iterative relaxation algorithm
- Note: May be multiple solutions!

https://en.wikipedia.org/wiki/Centroidal_Voronoi_tessellation

Homework 5 Questions?

Outline for Today

- Homework 5 Questions?
- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points ↔ Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Problem: Closest Pair

- Which two points are the closest?
- Applications Collision
 Detection & Air Traffic Control
- Which two objects have soonest potential for collision?
- Linear loop over all edges in the All Nearest Neighbors solution to find the shortest edge
- Will be a reciprocal pair

Computational Geometry: An Introduction, Preparata & Shamos, 1985, Figure 5.1

Problem: Euclidean Minimum Spanning Tree

- Given *n* points
- Draw *n*-1 edges to create a tree, connecting all points without creating any cycles.
- Pick edges to minimize the sum of their lengths.
- Application: Minimize
 cost of physical
 telephone lines

Figure 5.2 A minimum spanning tree on a planar point set.

Computational Geometry: An Introduction, Preparata & Shamos, 1985, Figure 5.2

Reduce Convex Hull to Voronoi Diagram

- Theorem: Voronoi polygon V_i is unbounded if and only if Voronoi site *i* is on the convex hull of all sites. (proved in Preparata & Shamos)
- O(n) to convert Voronoi Diagram to Convex Hull:
 - Start with any unbounded cell
 - Walk edges clockwise to find adjacent unbounded cell
 - Voronoi sites will trace convex hull in counter-clockwise order

Computational Geometry: An Introduction, Preparata & Shamos, 1985, Figure 5.31

Problems that Reduce to Voronoi Diagram

- We can compute the Voronoi Diagram of *n* points in O(n log n) time and O(n) space.
- These other problems can be computed in O(n) additional time if given the Voronoi Diagram.

Therefore they are also O(n log n) time and O(n) space.

Problems that Reduce to Voronoi Diagram

 We can compute the Voronoi Diagram of *n* points in O(n log n) time and O(n) space.

The oth

Because UNIQUENESS and SORTING are lower bound $\Omega(n \log n)$... VORONOI DIAGRAM is also $\Omega(n \log n)$

Therefore they are also O(n log n) time and O(n) space.

Outline for Today

- Homework 5 Questions?
- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points ↔ Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Duality: Points ↔ Lines

Point *p*: (p_x, p_y) in primal plane \leftrightarrow Line *p**: $y = p_x x - p_y$ in dual plane

slope

y-intercept

Duality: Points ↔ Lines

Points p_1 , p_2 , p_3 on line ℓ in primal plane, are lines p_1^* , p_2^* , p_3^* that pass through point ℓ^* in dual plane. primal plane dual

Duality: Points ↔ Lines

Point p_4 that lines above line ℓ in primal plane, Is line p_4^* that lies beneath point ℓ^* in dual plane.

Duality: Line Segment ↔ Double Wedge

Line segment *s* between points *p* and *q*, which lies on line ℓ_{pq} , in primal plane

Duality: Line Segment ↔ Double Wedge

Line segment *s* between points *p* and *q*, which lies on line ℓ_{pq} , in primal plane Is a double wedge *s*^{*} of area between lines *p*^{*} and *q*^{*} in the dual plane

primal plane

dual plane

Duality: Line Segment ↔ Double Wedge

The intersection point $p_{\ell s}$ of segment *s* and line ℓ in primal plane, Is line $p_{\ell s}^*$ that lies inside double wedge *s*^{*} and crosses ℓ^* and ℓ_{pq}^* in the dual plane

Duality: Assumptions / Special Cases

A vertical line segment ℓ_{vert} in the primal plane has slope $m = \infty$, and b = undefined

Duality: Assumptions / Special Cases

A vertical line segment ℓ_{vert} in the primal plane has slope $m = \infty$, and b = undefined

Duality: Why Bother?

- Solving a problem in the primal plane is equivalent to solving a problem in the dual space.
- Sometimes it is difficult to solve a problem in the primal plane, but relatively easy to solve the problem in the dual plane. (or vice versa)
- Note: There are many forms of duality... not just 2D point ↔ line!

Outline for Today

- Homework 5 Questions?
- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points ↔ Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Arrangement of Lines

- A collection of *n* lines in the plane
- Creates a subdivision of the plane into vertices, edges, and faces

Arrangement of Lines

- A collection of *n* lines in the plane
- Creates a subdivision of the plane into vertices, edges, and faces

- Definition:
 - A simple arrangement of lines
 - No three lines pass through the same point
 - No two lines are parallel

Outline for Today

- Homework 5 Questions?
- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points ↔ Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Complexity of an Arrangement of Lines

- A collection of *n* lines in the plane
- How many vertices?
- How many edges?
- How many faces?

Complexity of an Arrangement of Lines

face

- A collection of *n* lines in the plane
- How many vertices?
 - n * (n-1) / 2
- How many edges?
 - n^2
- How many faces?
 - $n^2/2 + n/2 + 1$

Or fewer if not a simple arrangement

- 3 or more lines intersect at a point, or
- 2 or more lines are parallel

Confirm using Euler formula: V - E + F = 2(Need to add an extra vertex to be the 2nd endpoint to every unbounded edge)

edge

\ vertex

Outline for Today

- Homework 5 Questions?
- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points ↔ Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Map Overlay & Line Segment Intersection

- Line Sweep Algorithm covered in Lecture 3
- For *n* line segments
- With k overlay complexity (# of elements in output)
- Runtime Analysis:
 O(n log n + k log n)

Applied to (Unbounded) Lines...

- For n line segments lines
- With *k* overlay complexity (# of elements in output)
 - $\rightarrow k = O(n^2)$
- Runtime Analysis:
 O(n log n + k log n)
 - $\rightarrow O(n^2 \log n)$

Can we do better?

- Dealing with unbounded cells in a half-edge structure is impractical.
- Compute the bounding box for the arrangement.
- Find all n * (n-1) vertices
 (pairwise intersect all of the lines)
 - Find the maximum and minimum x and y coordinates

- Insert the lines one at a time
- Intersect the line with the bounding box
- Cut edge into two new edges
- Cut face into
 two new faces
- Walk the edges of the face to find the next face

Runtime Analysis:

• linear cost to insert each line

• Overall:

Runtime Analysis:

- linear cost to insert each line
 - \rightarrow O(n)
- Overall:

 $\rightarrow O(n^2)$

Line arrangements (& their computation) are quadratic...

Outline for Today

- Homework 5 Questions?
- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points ↔ Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Ray Tracing Antialiasing – Supersampling

Noise from Insufficient Sampling

Can be very noticeable and distracting!

Henrik Wann Jensen

Noise from Insufficient Sampling

5 Samples/Pixel

25 Samples/Pixel

75 Samples/Pixel

"Efficient BRDF Importance Sampling Using a Factored Representation", SIGGRAPH 2004, Lawrence, Rusinkiewicz, & Ramamoorthi

Noise also comes from Poor Sampling

 With uniform random sampling, we can get unlucky...
 e.g. all samples in a corner

- Stratified Sampling can prevent it
 - Subdivide domain Ω into non-overlapping regions Ω_i
 - Each region is called a stratum
 - Take one random samples per Ω_i

Compute the Discrepancy of a Specific Pixel Sampling

- Generally we'll be ray tracing / sampling straight-edged geometric objects
- So our primary concern: Is the number of samples in the half space below a polygon edge proportional to the area of the square pixel below the edge?
- Idea: Let's convert the problem to the dual plane! (samples → lines, polygon edge → point)

Compute the Discrepancy of a Specific Pixel Sampling

- Compute the arrangement of the samples
 [lines in the dual plane] → O(n²)
- Using the arrangement, we can efficiently count the number of samples below the edge
 [lines above a point in the dual plane] → O(n)
- Determine the maximal discrepancy (edge whose area under the edge is least accurately estimated using these samples) → O(n²)
- Goal: A set of samples with small maximal discrepancy.

Outline for Today

- Homework 5 Questions?
- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points ↔ Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Interpreting Physical Sketches as Architectural Models

_ camera to
detect geometry

4 projectors to display solution

design sketched with foam-core walls

"Interpreting Physical Sketches as Architectural Models" Advances in Architectural Geometry 2010 Cutler & Nasman

Tangible Interface for Architectural Design

Overhead camera

Exterior & interior walls Tokens for:

- Windows
- Wall/floor colors
- North arrow

Inferred design

Projection geometry

Our Contributions

- Algorithm for automatic interpretation of interior space vs. exterior space
- Construction of a watertight 3D mesh
- User study collected >300 example designs
- Validation of algorithm
 - Compare to annotations by the original designer
- Quantify design ambiguity
 - Compare annotations of a design by other users

Physical Construction Tolerance: Collinearity

Detected Geometry

Designer's Intention

Favor Collinearity

Favor Skew Lines

Other Users' Interpretations

Linking Elements to Form Chains

• Nearby walls with similar tangents can be joined into a chain

Detected Geometry

Wall Chains, Extended to Infinity

A Modified "Line Arrangement"

- In addition to infinite straight lines, a "wall chain" may:
 - Bend or be curved!
 - Be a closed loop!
 - Cross itself!
 - Cross another wall chain more than once!

Halfspace Zones & Enclosure

• Further subdivided using GraphCuts (if needed)

Densely Sampled Enclosure (Visibility Test)

Halfspace Zones & Enclosure

- For n wall chains
- For simplicity, assume they are infinite straight lines
- We will have O(n²) faces/cells in the arrangement
- Each face/cell can be "interior" or "exterior"

• $\rightarrow 2^{O(n^2)}$ possible buildings Not feasible to check all of them!!

Interior/Exterior Enclosure Threshold

Z

• There is no universal threshold – varies design-to-design, and within-a-design

Automatic Interior/Exterior Determination & Final Floorplan

Compare to Designer's Intention

Interior/Exterior Optimization

- Analyze histogram of point-sampled enclosure values
- Maximize usage of lengths of real wall elements
- Minimize length of inferred (added) walls
- Minimize area assigned in opposition of simple threshold metric

Interior/Exterior Optimization

- Analyze histogram of point-sampled enclosure values
- Maximize usage of lengths of real wall elements
- Minimize length of inferred (added) walls
- Minimize area assigned in opposition of simple threshold metric

Interior/Exterior Optimization

• (Courtyard option) Minimize total enclosed area

User Study: Identify/Quantify Ambiguous Designs

Outline for Today

- Homework 5 Questions?
- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points ↔ Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Next Time: Delaunay Triangulation!

- The Voronoi Diagram (VD) is the dual of the Delaunay Triangulation (DT)
- Every Voronoi Site is a face in Voronoi Diagram and a vertex in the DT
- Every Voronoi Edge is an edge in the DT
 - Every Voronoi Vertex is a triangle in the DT

Computational Geometry: An Introduction, Preparata & Shamos, Figure 5.21