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Lecture 13:
Arrangements

& Duality


https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Outline for Today

Homework 5 Questions?

Last Lecture: Problems that reduce to Voronoi Diagrams
Duality: Points < Lines

Arrangement of Lines

Complexity of an Arrangement of Lines

Algorithm to Construct Arrangement of Lines
Arrangement Application: Ray Tracing Supersampling
Arrangement Application: Architectural Sketching

Next Time: Delaunay Triangulations



K-Means Clustering

e \Works quite well, when the data can be meaningfully classified
(and we know how many clusters to use).

e With dense data, output is visually similar to Voronoi diagram
(k-Means chooses the data points that define the cells)
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http://blog.mpacula.com/2011/04/27/k-means-clustering-example-python/ "Efficient K-Means Clustering using JIT" Yi Cao
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Wei Zhang
https://wei2624.github.io/MachineLearning/usv_kmeans/
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Centroidal Voronoi Diagram

e What if we could place all of the grocery stores?
e \Where should we place the grocery stores so that
they are centrally located for all of their customers?

e But if you change the position of the store, the closest S UG
store will change for some customers... - -
e Points are at the center of mass of their cell
e Constructed using k-means clustering /
Lloyd’s algorithm - an iterative relaxation algorithm +

e Note: May be multiple solutions!

https://en.wikipedia.org/wiki/Centroidal_Voronoi_tessellation
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Problem: Closest Pair

e \Which two points are the
closest?
e Applications - Collision
Detection & Air Traffic Control
e Which two objects
have soonest potential
for collision?

e Linear loop over all X

edges in the All Nearest
Neighbors solution to find

the shortest edge

e Will be a reciprocal pair Computational Geometry: An Introduction,

Preparata & Shamos, 1985, Figure 5.1



Problem: Euclidean Minimum Spanning Tree

e Given n points

e Draw n-1 edges to create
a tree, connecting all Q‘
points without creating
any cycles. #

e Pick edges to minimize
the sum of their lengths.

° Application: Minimize Figure 5.2 A minimum spanning tree on a planar point set.

cost of physical e e g
telephone lines



Reduce Convex Hull to Voronoi Diagram

Theorem: Voronoi polygon V.

is unbounded if and only if
Voronoi site i is on the convex

hull of all sites. (proved in Preparata & Shamos)

O(n) to convert Voronoi Diagram
to Convex Hull:

e Start with any unbounded cell
e Walk edges clockwise to find
adjacent unbounded cell

e Voronoi sites will
trace convex hull in
counter-clockwise order

Figure 5.31 Construction of the convex hull from the Voronoi diagram.

Computational Geometry: An Introduction,
Preparata & Shamos, 1985, Figure 5.31



Problems that Reduce to Voronoi Diagram

o We can compute the g EMENT UNIQUENESS — CLOSEST PAIR (P1)

Voronoi Diagram of i LN
n points in O(n log n) N ALL NEAREST
time and O(n) space. \ _wEMST (93)__5%5_%8\?\1?5 (P.Z)

e These other - . "
problems can be SORTING ————-*TRIANGUIF\JATION (P4) =1\ GRAM
computed Iin NT
O(n) additional ORDERED CONVEXHULL
time if given the Praparata & Shamos, 1985 Fgure 5.0

Voronoi Diagram.
e Therefore they are also O(n log n) time and O(n) space.



Problems that Reduce to Voronoi Diagram

o We can compute the g EMENT UNIQUENESS — CLOSEST PAIR (P1)

Y, N
Voronoi Diagram of N
n points in O(n log n) N ALL NEAREST
. NEIGHBORS (P2)
time and O(n) space. EMST (RP3)-—-—- —=sg lN
N N log N ">«
® The =t N N VORONO!
———»TRIANGULATION (P4)—>
Because UNIQUENESS SORTING . DIAGRAM
and SORTING are NT
lower bound Q(n log n)... ORDERED CONVEX HULL
VORONOI DIAGRAM | |
. Computational Geometry: An Introduction,
IS aISO Q(n |Og n) Preparata & Shamos, 1985, Figure 5.30
VoI . -

e Therefore they are also O(n log n) time and O(n) space.
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Duality: Points < Lines slope y-intercept

2Vl

Point p: (px,py) in primal plane < Line p™ y=p x - p, in dual plane

primal plane dual plane
* pP3
y l P1 y
[
P4
P2 \
X )+ X
P1
Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8




Duality: Points < Lines

Line £: y = mx + b in primal plane < Point £*: (m,b) in dual plane
slope S ™~ y-intercept

primal plane dual plane
*
* pP3
y l P1 y
[
P4
P2 \
X f*
P1
Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8




Duality: Points < Lines

Points p,, p,, p, on line £in primal plane,

are lines p,*, p,”*, p," that pass through point #* in dual plane.

primal plane dual plane
*
* pP3
y / P1 y
[
P4
P2 \
X X
Z*
P1
Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8

D2



Duality: Points < Lines

Point p, that lines above line £in primal plane,
s line p,* that lies beneath point #* in dual plane.

primal plane dual plane
pP3
y / P1 y
®
P4
P2
X 7+ X
P1
Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8

P2



Duality: Line Segment < Double Wedge

Line segment s between points p and g, which lies on line {’pq, in primal plane

primal plane . dual plane

Computatiegal Geometry Algorithms and Applications,
p de Berg, Cheong, van Kreveld and Overmars, Chapter 8 %



Duality: Line Segment < Double Wedge

Line segment s between points p and q, which lies on line {’pq, in primal plane
Is a double wedge s* of area between lines p* and g* in the dual plane

primal plane dual plane

Computatiegal Geometry Algorithms and Applications,
p de Berg, Cheong, van Kreveld and Overmars, Chapter 8 %



Duality: Line Segment < Double Wedge

The intersection point p, of segment s and line ¢ in primal plane,
s line p, * that lies inside double wedge s™ and crosses ¢* and {’pq* in the dual plane

primal plane dual plane

Computatiegal Geometry Algorithms and Applications,
p de Berg, Cheong, van Kreveld and Overmars, Chapter 8 %



Duality: Assumptions / Special Cases

A vertical line segment £ __ in the primal plane has slope m = «, and b = undefined

Where is the dual fver * P77

/ primal plane t dual plane
ve
*
* pP3
y l P1 y
*
D4 ® P2
pP3 %
P4
P2 \
X )+ X
P1
Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8




Duality: Assumptions / Special Cases

A vertical line segment £ __ in the primal plane has slope m = «, and b = undefined

Where is the dual fve * 707

primal plane t dual plane
vert
*
* P3
y l Pl y
*
D4 ® D3 ) D2
P4
P2 \
b R x
P1 Either assume no vertical lines
OR rotate everything in the primal plane
by a tiny angle so nothing is vertical



Duality: Why Bother?

Solving a problem in the primal plane is equivalent

to solving a problem in the dual space.

Sometimes it is difficult to solve a problem in the primal plane,

but relatively easy to solve the problem in the dual plane. (or vice versa)
Note: There are many forms of duality... not just 2D point < line!

primal plane dual plane

: p3
y ¢ p1 y

X
P4 ® D3 D2
P4
P2

X e* X
P1
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Arrangement of Lines

e Acollection of n lines in the plane
e Creates a subdivision of the plane
into vertices, edges, and faces

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8



Arrangement of Lines

e Acollection of n lines in the plane
e Creates a subdivision of the plane
into vertices, edges, and faces

e Definition:
A simple arrangement of lines

e No three lines pass through
the same point
e No two lines are parallel

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8
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Complexity of an Arrangement of Lines

e Acollection of n lines in the plane
e How many vertices?

o

e How many edges?
o

e How many faces?
[

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8



Complexity of an Arrangement of Lines

Confirm using Euler formula: V-E +F =2

® A Collection Of n IineS in the plane (Need to add an extra vertex to be the
\ 2nd endpoint to every unbounded edge)
e How many vertices?

e n*(n-1)/2
e How many edges?
a3

e How many faces?
o nN’2+n/2+1

Or fewer if not a simple arrangement

e 3 or more lines intersect
at a point, or
e 2 or more lines are parallel

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8
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Map Overlay & Line Segment Intersection

e Line Sweep Algorithm
covered in Lecture 3

e For nline segments
e \With k overlay complexity
(# of elements in output)

e Runtime Analysis:
O(n log n + k log n)

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 2



Applied to (Unbounded) Lines...
e For n kresegments lines

e \With k overlay complexity
(# of elements in output)

— k=0(n?

e Runtime Analysis:
O(n log n + k log n)

— O(n? log n)

Can we do better?

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8



Construct an Arrangement

e Dealing with unbounded cells in a half-edge structure is impractical.

e Compute the bounding box
for the arrangement.

e Find all n* (n-1) vertices
(pairwise intersect all of the lines)

e Find the maximum and minimum
x and y coordinates

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8



Construct an Arrangement

Insert the lines
one at a time
Intersect the line with
the bounding box
Cut edge into
two new edges
Cut face into

two new faces
Walk the edges
of the face to find
the next face

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8




Construct an Arrangement

Runtime Analysis:

e linear cost to insert
each line

e Overall:

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8



Construct an Arrangement

Runtime Analysis:

e linear cost to insert
each line

— O(n)
e COverall:

— O(n?)

Line arrangements
(& their computation)
are quadratic...

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8
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Ray Tracing Antialiasing — Supersampling

e Trace
multiple rays
per pixel

jaggies w/ antialiasing

Computational Geometry Algorithms
and Applications,
de Berg, Cheong, van Kreveld
and Overmars, Chapter 8




Noise from Insufficient Sampling

Can be very
noticeable
and distracting!

Henrik Wann Jensen |




Noise from Insufficient Sampling

5 Samples/Pixel 25 Samples/Pixel 75 Samples/Pixel

“Efficient BRDF Importance Sampling Using a Factored Representation”,
SIGGRAPH 2004, Lawrence, Rusinkiewicz, & Ramamoorthi



Noise also comes from Poor Sampling

e With uniform random sampling, ’
we can get unlucky...

e.g. all samples in a corner

e Stratified Sampling can prevent it

e Subdivide domain Q into ®
non-overlapping regions €.
e Each region is called a stratum ®

e Take one random samples per Q




Compute the Discrepancy
of a Specific Pixel Sampling

Generally we'll be ray tracing / sampling
straight-edged geometric objects

So our primary concern:

Is the number of samples in the half space
below a polygon edge proportional to the area
of the square pixel below the edge?

Idea: Let’s convert the problem to the dual plane!
(samples — lines, polygon edge — point)

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8



Compute the Discrepancy
of a Specific Pixel Sampling

e Compute the arrangement of the samples
[ lines in the dual plane ] — O(n?)

e Using the arrangement, we can efficiently {evdlenivettioes
count the number of samples below the edge in an arrangement
[ lines above a point in the dual plane ] — O(n)

e Determine the maximal discrepancy (edge
whose area under the edge is least accurately
estimated using these samples) — O(n?)

e Goal: A set of samples with
small maximal discrepancy.

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8
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Interpreting Physical Sketches as Architectural Models

‘ A A -
'.Q -— " w—-, camera to

detect geometry

4 projectors to
display solution

design sketched with
foam-core walls

“Interpreting Physical Sketches
as Architectural Models”
Advances in Architectural Geometry 2010
Cutler & Nasman



Tangible Interface for Architectural Design

|
I
N
AN
(W]

Projection geometry

Overhead camera

Exterior & interior walls

4 Tokens for:
e Windows
Wall/floor colors
Inferred design

North arrow




Our Contributions

e Algorithm for automatic interpretation of interior space vs.
exterior space

e Construction of a watertight 3D mesh
e User study collected >300 example designs
e \alidation of algorithm
e Compare to annotations by the original designer
e Quantify design ambiguity

e Compare annotations of a design by other users



Physical Construction Tolerance: Collinearity

/
N
7
N

»

Detected Geometry Designer’s Intention  Favor Collinearity Favor Skew Lines

ZIN\ | / 2\ o\ A \

Other Users’ Interpretations



Linking Elements to Form Chains

e Nearby walls with similar tangents can be joined into a chain

~ ///\ \ T :\gﬁ -
O T N R

Detected Geometry

%O D -

/

Wall Chains, Extended to Infinity



A Modified “Line Arrangement”

e |n addition to infinite straight
lines, a “wall chain” may: /
e Bend or be curved! /
e Be a closed loop!
e Cross itself!
o
—

Cross another

wall chain

more than once! |
\J




Halfspace Zones & Enclosure
e Further subdivided using GraphCuts (if needed)

|
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Densely Sampled Enclosure (Visibility Test)




Halfspace Zones & Enclosure

e For n wall chains '

e For simplicity, assume they _y ‘
are infinite straight lines “

e We will have O(n?) “
faces/cells in the arrangement ‘

e Each face/cell can be "

“Interior” or “exterior”

|

1
G

O(n? ] £\
R Ty possible buildings
Not feasible to check all of them!!




Interior/Exterior Enclosure Threshold

e There is no universal threshold — varies design-to-design, and within-a-design

P - 4 (ﬂ\

Automatic Interior/Exterior Determination & Final Floorplan

»

/\/ | /;’/ | ‘/- 11717 --.7 //W
\\X Y & Vg .

- Compare to Designer’s Intention



Interior/Exterior Optimization

e Analyze histogram of point-sampled enclosure values

e Maximize usage of lengths of real wall elements

e Minimize length of inferred (added) walls

e Minimize area assigned in opposition of simple threshold metric




Interior/Exterior Optimization

Analyze histogram of point-sampled enclosure values
Maximize usage of lengths of real wall elements

Minimize length of inferred (added) walls

Minimize area assigned in opposition of simple threshold metric




Interior/Exterior Optimization

e (Courtyard option) Minimize total enclosed area

|
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User Study: Identify/Quantify Ambiguous Designs
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Next Time: Delaunay Triangulation!

e The Voronoi Diagram (VD)
is the dual of the
Delaunay Triangulation (DT)
e Every Voronoi Site is
a face in Voronoi Diagram
and a vertex in the DT
e Every Voronoi Edge is
an edge in the DT
e Every Voronoi Vertex
is a triangle in the DT

Computational Geometry: An Introduction,
Preparata & Shamos, Figure 5.21



