## CSCI 4560/6560 Computational Geometry

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

## Lecture 14: Delaunay

## Triangulations, part 1

## Outline for Today

- Homework 5 Questions?
- Final Project: Brainstorming Ideas \& Partner Matching
- Last Time: Duality \& Arrangements
- Motivation: Interpolation \& Terrain Height Maps
- Graph vs. Planar Graph vs. Plane Graph
- Triangulation \& Angle-Optimal Triangulation
- Thale's Theorem \& Inscribed Angle Theorem
- Brute Force Construction of Angle-Optimal Triangulation
- Duality: Voronoi Diagram \& Delaunay Triangulation
- Next Time: More Delaunay Triangulations!


## Centroidal Voronoi Diagram

- What if we could place all of the grocery stores?
- Where should we place the grocery stores so that
 they are centrally located for all of their customers?
- But if you change the position of the store, the closest store will change for some customers...
- Points are at the center of mass of their cell

- Constructed using k-means clustering / Lloyd's algorithm - an iterative relaxation algorithm
- Note: May be multiple solutions!


Homework 5 Questions?



## Outline for Today

- Homework 5 Questions?
- Final Project: Brainstorming Ideas \& Partner Matching
- Last Time: Duality \& Arrangements
- Motivation: Interpolation \& Terrain Height Maps
- Graph vs. Planar Graph vs. Plane Graph
- Triangulation \& Angle-Optimal Triangulation
- Thale's Theorem \& Inscribed Angle Theorem
- Brute Force Construction of Angle-Optimal Triangulation
- Duality: Voronoi Diagram \& Delaunay Triangulation
- Next Time: More Delaunay Triangulations!


## Final Project Brainstorming

- Each student posts two different final project ideas on the forum
- For each idea:
- Briefly describe the idea, your motivation for it, and an example of the potential result
- What is the technical implementation/theory challenge?
- Can be an Individual Project or a Team of 2
- Have you already decided on one idea? Which one?
- Do you already have a partner? Who? (even if you have chosen an idea and/or a partner everyone must post 2 different ideas)
- Due Monday 10/23@11:59pm


## Outline for Today

- Homework 5 Questions?
- Final Project: Brainstorming Ideas \& Partner Matching
- Last Time: Duality \& Arrangements
- Motivation: Interpolation \& Terrain Height Maps
- Graph vs. Planar Graph vs. Plane Graph
- Triangulation \& Angle-Optimal Triangulation
- Thale's Theorem \& Inscribed Angle Theorem
- Brute Force Construction of Angle-Optimal Triangulation
- Duality: Voronoi Diagram \& Delaunay Triangulation
- Next Time: More Delaunay Triangulations!


## Duality: Points $\leftrightarrow$ Lines

Point $p:\left(p_{x}, p_{y}\right)$ in primal plane $\leftrightarrow$ Line $p^{*}: y=p_{x} x-p_{y}$ in dual plane
primal plane



## Duality: Points $\leftrightarrow$ Lines

Line $\ell: y=m x+b$ in primal plane $\leftrightarrow$ Point $\ell^{*}:(m, b)$ in dual plane
slope y-intercept
primal plane


Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 8


## Complexity of an Arrangement of Lines

- A collection of $n$ lines in the plane
- How many vertices?
- $n$ * $(n-1) / 2$
- How many edges?
- $n^{2}$
- How many faces?
- $n^{2} / 2+n / 2+1$

Or fewer if not a simple arrangement

- 3 or more lines intersect at a point, or
- 2 or more lines are parallel


Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 8

## Construct an Arrangement

- Insert the lines one at a time
- Intersect the line with the bounding box
- Cut edge into two new edges
- Cut face into two new faces
- Walk the edges of the face to find the next face

Line arrangements (\& their computation) are quadratic...


Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 8

## A Modified "Line Arrangement"

- In addition to infinite straight lines, a "wall chain" may:
- Bend or be curved!
- Be a closed loop!
- Cross itself!
- Cross another wall chain more than once!



## Halfspace Zones \& Enclosure

- For $n$ wall chains
- For simplicity, assume they are infinite straight lines
- We will have $O\left(n^{2}\right)$ faces/cells in the arrangement

- Each face/cell can be "interior" or "exterior"
- $\rightarrow 2^{O\left(n^{2}\right)}$ possible buildings Not feasible to check all of them!!



## Outline for Today

- Homework 5 Questions?
- Final Project: Brainstorming Ideas \& Partner Matching
- Last Time: Duality \& Arrangements
- Motivation: Interpolation \& Terrain Height Maps
- Graph vs. Planar Graph vs. Plane Graph
- Triangulation \& Angle-Optimal Triangulation
- Thale's Theorem \& Inscribed Angle Theorem
- Brute Force Construction of Angle-Optimal Triangulation
- Duality: Voronoi Diagram \& Delaunay Triangulation
- Next Time: More Delaunay Triangulations!

Nearest Neighbor vs. Bi-Linear Interpolation


## Bilinear Interpolation

- Think about one axis at a time (doesn't matter which axis)
- Calculate $u$, the fraction of the distance along the horizontal axis, e.g., $u=0.65$
- Then calculate the top \& bottom averages:

$$
\begin{aligned}
\text { orange } & =(1-u)^{*} \text { red }+u^{*} \text { yellow } \\
\text { bluegreen } & =(1-u)^{*} \text { cyan }+u^{*} \text { green }
\end{aligned}
$$

- Calculate $v$, the fraction of the distance along the vertical axis, e.g., $v=0.6$
- Then calculate the final average:

$$
\text { pukegreen }=(1-v)^{*} \text { bluegreen }+v^{*} \text { orange }
$$



## Motivation: Terrain Height Map



Nearest Neighbor


Bi-Linear Interpolation

## Not all Triangulations are the same!

this triangulation is better

height $=985$
this triangulation is worse

height $=23$

## Not all Triangulations are the same!

this triangulation is better

height $=985$
this triangulation is worse


Likely neither is perfect. Which one is more correct?

We don't know.
But interpolating along a shorter distance is probably more accurate.

## Motivation: Terrain Height Map



## "Siting Observers on Terrain" <br> W. Randolph Franklin, RPI ECSE, 2004



What other points on the terrain can we see from a tower of height h placed at a specific $(x, y)$ location on the terrain?

## Terrain Height Visualization

red $=$ higher elevations
blue = lower elevations

- Observers have a specified maximum straight line sight distance
- Some observer placements see more (black)
- Regions that are
 white are occluded or too far from observer


- Place $k$ observers to maximize coverage
- Additional constraint: The observers must also be connected by line-of-sight


## Incorrect Interpolation

Regular grid of height samples
Query for occlusions along sight line


## Hue indicates elevation



## Outline for Today

- Homework 5 Questions?
- Final Project: Brainstorming Ideas \& Partner Matching
- Last Time: Duality \& Arrangements
- Motivation: Interpolation \& Terrain Height Maps
- Graph vs. Planar Graph vs. Plane Graph
- Triangulation \& Angle-Optimal Triangulation
- Thale's Theorem \& Inscribed Angle Theorem
- Brute Force Construction of Angle-Optimal Triangulation
- Duality: Voronoi Diagram \& Delaunay Triangulation
- Next Time: More Delaunay Triangulations!


## Definition: Planar Graph vs. Plane Graph

Planar Graph: A graph that can be arranged/drawn in 2D without edge crossings Plane Graph: An embedding, a 2D drawing of a graph without edge crossings


https://en.wikipedia.org/wiki/Planar_graph

## Outline for Today

- Homework 5 Questions?
- Final Project: Brainstorming Ideas \& Partner Matching
- Last Time: Duality \& Arrangements
- Motivation: Interpolation \& Terrain Height Maps
- Graph vs. Planar Graph vs. Plane Graph
- Triangulation \& Angle-Optimal Triangulation
- Thale's Theorem \& Inscribed Angle Theorem
- Brute Force Construction of Angle-Optimal Triangulation
- Duality: Voronoi Diagram \& Delaunay Triangulation
- Next Time: More Delaunay Triangulations!


## Definition: Point Set Triangulation

- A triangulation is a

Maximal Planar Subdivision of a vertex set

- No edge connecting two vertices can be added without destroying planarity
- Every face will have 3 vertices



## Face/Edge/Vertex Count of a Triangulation

- For $n=18$ vertices
- With $k=9$ vertices on the convex hull boundary
- The unbounded face has all of the vertices on the convex hull boundary
- Euler's formula: $n-n_{e}+n_{f}=2$
- Every bounded face has 3 edges (each shared with another face)
- 2 * $n_{e}=3$ * $\left(n_{f}-1\right)+k$
- \# edges: $n_{e}=3 n-k-3=42$
- \#triangles: $n_{f}-1=2 n-2-k=25$


## Definition: Angle-Optimal Triangulation

- We want to maximize the smallest angle
- Consider replacing each edge between two triangles with the edge connecting the other vertices of those two triangles (only possible if the combined area of the two triangles is convex)

- Edge $p_{i} p_{j}$ is said to be illegal if:
$\min _{1 \leq i \leq 6} \alpha_{i}$ $1 \leqslant i \leqslant 6$

Compufational Geomietry Algorithms and Applications, de Berg, eredong, van Kreveld and Overmars, Chapter 9

## Outline for Today

- Homework 5 Questions?
- Final Project: Brainstorming Ideas \& Partner Matching
- Last Time: Duality \& Arrangements
- Motivation: Interpolation \& Terrain Height Maps
- Graph vs. Planar Graph vs. Plane Graph
- Triangulation \& Angle-Optimal Triangulation
- Thale's Theorem \& Inscribed Angle Theorem
- Brute Force Construction of Angle-Optimal Triangulation
- Duality: Voronoi Diagram \& Delaunay Triangulation
- Next Time: More Delaunay Triangulations!


## Relationship: Angles \& Circumscribed Circle

Thales Theorem: Let $C$ be a circle, $\ell$ a line intersecting $C$ in points $a$ and $b$, and $p, q$, $r$, and $s$ points lying on the same side of $\ell$. Suppose that $p$ and $q$ lie on $C$, that $r$ lies inside $C$, and that $s$ lies outside $C$. Then

$$
\measuredangle a r b>\measuredangle a p b=\measuredangle a q b>\measuredangle a s b
$$



Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 9

## Thale's Theorem

If $A, B$, and $C$ lie on a circle, and $A C$ is a diameter, then the angle at $B$ (the angle $A B C$ ) is a right angle.

Dissection proof: The sum of the angles of a triangle is $180^{\circ}$


https://en.wikipedia.org/wiki/Thales\'s_theorem

## Inscribed Angle Theorem

The inscribed angle $\theta$ is half of the central angle $2 \theta$ that subtends the same arc on the circle. The angle $\theta$ does not change as its vertex is moved around on the circle.

https://en.wikipedia.org/wiki/Inscribed_angle\#Theorem

## Inscribed Angle Theorem

## Proof:

Where 1 chord is a diameter


Proof:
General Case

https://en.wikipedia.org/wiki/Inscribed_angle\#Theorem

## Definition: Angle-Optimal Triangulation

- We want to maximize the smallest angle.
- An edge is illegal only if the other vertex of the neighboring triangle is inside the circumscribed circle.



## Outline for Today

- Homework 5 Questions?
- Final Project: Brainstorming Ideas \& Partner Matching
- Last Time: Duality \& Arrangements
- Motivation: Interpolation \& Terrain Height Maps
- Graph vs. Planar Graph vs. Plane Graph
- Triangulation \& Angle-Optimal Triangulation
- Thale's Theorem \& Inscribed Angle Theorem
- Brute Force Construction of Angle-Optimal Triangulation
- Duality: Voronoi Diagram \& Delaunay Triangulation
- Next Time: More Delaunay Triangulations!


## Constructing an Angle-Optimal Triangulation

## Brute Force:



## Constructing an Angle-Optimal Triangulation

## Brute Force:

- Try all combinations of 3 vertices
- Construct the circumscribed circle
- If no other vertex is inside of that circle, keep it
- Only works if no more than 3 vertices are on the circle
- Analysis?



## Constructing an Angle-Optimal Triangulation

## Brute Force:

- Try all combinations of 3 vertices $\binom{n}{3} \rightarrow O\left(n^{3}\right)$
- Construct the circumscribed circle $\rightarrow \mathrm{O}(1)$
- If no other vertex is inside of that circle, keep it
$\rightarrow \mathrm{O}(n)$
- Only works if no more than 3 vertices are on the circle
- Analysis?



## Constructing an Angle-Optimal Triangulation

- Start with any triangulation = a maximal planar subdivision
- Check to see if any edge is illegal, if so flip it
- Repeat until every edge is legal


Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 9

## Constructing an Angle-Optimal Triangulation

- Start with any triangulation = a maximal planar subdivision
- Check to see if any edge is illegal, if so flip it
- Repeat until every edge is legal



## Constructing an Angle-Optimal Triangulation

- Start with any triangulation = a maximal planar subdivision
- Check to see if any edge is illegal, if so flip it
- Repeat until every edge is legal



## Guaranteed to Terminate? Yes!

- Create a sorted vector of all of the angles of every triangle vector length $=3$ * \# of triangles
- Each edge flip replaces one of the smaller angles
- New sorted vector representation is the same up to that angle.. (it comes lexicographically after the previous vector representation)



## Converge to Optimal \& Unique Solution?

- Yes!

If the vertices are in general position
... if no 4 vertices lie on the same circumscribed circle


Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 9

## Analysis of Incremental Flipping Algorithm



Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 9

## Analysis of Incremental Flipping Algorithm

```
while (true)
    loop over all edges in the mesh }->O(n
            if the edge is illegal }->O(1
                swap edge }->O(1)& continue outer loo
```

        if all edges are legal
            break outer loop
    

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 9

## Analysis of Incremental Flipping Algorithm

- We know we won't loop/repeat the same triangulation... but
- Given $n$ points, and $k$ points on the convex hull, each triangulation has $2 n-k-2$ triangles
- How many different triangulations? It might be exponential! $\rightarrow O\left(c^{n}\right)$


Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 9

## Analysis of Incremental Flipping Algorithm

- It's slow! Could it be $O\left(n^{*} c^{n}\right)$ ????
- Can we do better? Yes! (more next lecture)


Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 9

## Outline for Today

- Homework 5 Questions?
- Final Project: Brainstorming Ideas \& Partner Matching
- Last Time: Duality \& Arrangements
- Motivation: Interpolation \& Terrain Height Maps
- Graph vs. Planar Graph vs. Plane Graph
- Triangulation \& Angle-Optimal Triangulation
- Thale's Theorem \& Inscribed Angle Theorem
- Brute Force Construction of Angle-Optimal Triangulation
- Duality: Voronoi Diagram \& Delaunay Triangulation
- Next Time: More Delaunay Triangulations!


## Dual: Voronoi Diagram \& Delaunay Triangulation

- The Voronoi Diagram (VD) is the dual of the Delaunay Triangulation (DT)
- Every Voronoi Site is a face in Voronoi Diagram and a vertex in the DT
- Every Voronoi Edge is an edge in the DT
- Every Voronoi Vertex is a triangle in the DT


## Dual Graph of the Voronoi Diagram

Dual Graph: Has an arc connecting two Voronoi Sites for every edge between neighboring cells in the Voronoi Diagram. nelghboring cell inthe Voronol.

Delaunay Graph: Straight line embedding of the Dual Graph of the Voronoi Diagram.

## Delaunay Graph

- NOTE: Straight line edges of the embedding may not cross their corresponding Voronoi edge.
- But the Delaunay Graph is planar straight line edge of the embedding do not cross (proof in textbook).


## Delaunay Graph vs. Delaunay Triangulation

- If 4 (or more) vertices do lie on the same circumscribed circle
- Voronoi Vertex, $v$, will have degree $\geq 4$
- The corresponding face in the Delaunay Graph will have $\geq 4$ edges
- This face is guaranteed to be convex
- This face can be trivially triangulated
- Once all of these faces are triangulated, we have a Delaunay Triangulation
- The Delaunay Triangulation is unique and equivalent to the Delaunay Graph only if the
 vertices are in general position


## Delaunay Triangulation

- A Delaunay Triangulation is an Angle-Optimal Triangulation!


## Outline for Today

- Homework 5 Questions?
- Final Project: Brainstorming Ideas \& Partner Matching
- Last Time: Duality \& Arrangements
- Motivation: Interpolation \& Terrain Height Maps
- Graph vs. Planar Graph vs. Plane Graph
- Triangulation \& Angle-Optimal Triangulation
- Thale's Theorem \& Inscribed Angle Theorem
- Brute Force Construction of Angle-Optimal Triangulation
- Duality: Voronoi Diagram \& Delaunay Triangulation
- Next Time: More Delaunay Triangulations!

