
CSCI 4560/6560 Computational Geometry
https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Lecture 16:
Windowing, Interval
& Segment Trees

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Outline for Today
● Review from Last Time: Delaunay Triangulations
● Motivation: Cartography Windowing & Data Selection
● Lecture 8 Review: Points in k-D trees and Range Trees
● 1D Interval Tree
● 1D Interval Tree Analysis
● 2D Interval Tree + Range Tree
● 2D Interval Tree + Range Tree Analysis
● 2D Axis Aligned Segment Query
● Segment Tree for general 2D Segment Query
● Segment Tree Analysis
● Next Time: Quad Trees

Construction by Point Insertion
● Start with convex hull

● Triangulate it
● k-2 triangles

● For some ordering
of the other points
● Determine which triangle

the point lies inside of
● Replace that triangle

with 3 triangles
● (n - k) * 2 additional

triangles
● 2*n - k - 2 total triangles!

“Discrete and Computational Geometry”, Devadoss & O’Rourke,
Princeton University Press 2011, Chapter 3

Construction by Line Sweep
● Sort the input

points by x
● Form a triangle

with the 3
leftmost points

● Add every
other point
from left to right
● Determine which points on the current hull are visible from the new point
● Add a fan of triangles connecting the new point to the visible hull points

“Discrete and Computational Geometry”, Devadoss & O’Rourke,
Princeton University Press 2011, Chapter 3

The Flip Graph
● If we did generate

every triangulation…

● Let’s organize the
triangulations as
nodes in a graph

● We’ll put an edge
between two nodes
if flipping a single
edge converts one
triangulation into the
other triangulation “Discrete and Computational Geometry”, Devadoss & O’Rourke,

Princeton University Press 2011, Chapter 3

Randomized Incremental Construction of
Delaunay Triangulation
● Randomize order of points and insert one at a time
● Identify

which triangle
contains pr

● Split into
3 smaller
triangles

● Flip neighboring
edges as
necessary

Hopefully the footprint of impact is small! Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 9

Delaunay Construction Analysis Summary
● Brute force (enumerate all triangles, construct circles, reject…)

→ O(n3 * n) = O(n4)

● Construct any triangulation & Flip until all edges are legal

→ O(n2)

● Randomized Incremental Construction

→ O(n log n)

● By duality, reduce to problem of Constructing the Voronoi Diagram

→ O(n log n)

Outline for Today
● Review from Last Time: Delaunay Triangulations
● Motivation: Cartography Windowing & Data Selection
● Lecture 8 Review: Points in k-D trees and Range Trees
● 1D Interval Tree
● 1D Interval Tree Analysis
● 2D Interval Tree + Range Tree
● 2D Interval Tree + Range Tree Analysis
● 2D Axis Aligned Segment Query
● Segment Tree for general 2D Segment Query
● Segment Tree Analysis
● Next Time: Quad Trees

Motivation: Cartography (Map-Making)
● Select a small rectangular region to display in a window at larger scale

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 10

Motivation: Visibility

Seth Teller, PhD thesis, 1992,
Berkeley Soda Hall walkthrough

Graphics: 3D Clipping
● Eliminate portions of

objects outside the viewing
frustum

● View Frustum
● boundaries of the

image plane
projected in 3D

● a near & far
clipping plane

bottom

top

right

left

near

far

camera/eye

Graphics: 2D Clipping

https://www.tutorialandexample.com/clipping-in-computer-graphics

Why do it?

● Reduce amount of
geometry going
through graphics
pipeline

● Prevent rendering
bugs from overflow,
wraparound, things
behind the camera,
etc.

Perspective Projection onto Image Plane

(eyex, eyey, eyez)

image plane

z axis →+

What if the pz is > eyez?

(eyex, eyey, eyez)

image plane

z axis →+

Objects in front of the camera are
correctly projected onto the image plane

What if the pz is < eyez?

+
(eyex, eyey, eyez)

image plane

z axis →

Objects behind the camera are INCORRECTLY
projected onto the image plane

What if the pz ≈ eyez?

???

+
(eyex, eyey, eyez)

image plane

z axis →

Objects at or crossing the plane with the camera
are INCORRECTLY projected onto the image plane

What if the pz ≈ eyez?

???

+
(eyex, eyey, eyez)

image plane

z axis →

Objects at or crossing the plane with the camera
are INCORRECTLY projected onto the image plane

Outline for Today
● Review from Last Time: Delaunay Triangulations
● Motivation: Cartography Windowing & Data Selection
● Lecture 8 Review: Points in k-D trees and Range Trees
● 1D Interval Tree
● 1D Interval Tree Analysis
● 2D Interval Tree + Range Tree
● 2D Interval Tree + Range Tree Analysis
● 2D Axis Aligned Segment Query
● Segment Tree for general 2D Segment Query
● Segment Tree Analysis
● Next Time: Quad Trees

Review from Lecture 8: 2D k-d Tree
● Used to store points
● Alternate splitting

horizontally &
vertically

● If data is available
for preprocess, the
structure is easy to
balance

● Point data is only
stored at the leaves

● Search through level 1 (blue) tree for
all intermediate nodes that fit completely
inside the query’s x range

For each matched intermediate blue node

● Search through the corresponding
level 2 (green) trees for all nodes
and leaves that fit completely
inside the query’s y range

Return all matching data!

Review from Lecture 8:
How to Query 2D Range Tree

Outline for Today
● Review from Last Time: Delaunay Triangulations
● Motivation: Cartography Windowing & Data Selection
● Lecture 8 Review: Points in k-D trees and Range Trees
● 1D Interval Tree
● 1D Interval Tree Analysis
● 2D Interval Tree + Range Tree
● 2D Interval Tree + Range Tree Analysis
● 2D Axis Aligned Segment Query
● Segment Tree for general 2D Segment Query
● Segment Tree Analysis
● Next Time: Quad Trees

What about Segments? Let’s Tackle 1D First…
● Input: A collection of n line segments on the x-axis
● For a query interval, return all line segments that overlap the query interval

Traditional Binary Search Tree
● Select split point near middle of data
● What about segments that overlap the split?

1
2 3

6
5

4

7

Traditional Binary Search Tree

1
2 3

6
5

4

7

2 2
1

2
16 6
5

5 54
3 37

● Select split point near middle of data
● What about segments that overlap the split?
● Should we store them on both sides?

● Uses extra memory
● Have to remove duplicates
● We may lose our O(log n) performance!

Interval Tree
● Chose a split point and make 3 groups:

● Imid = Segments that overlap the split
● Ileft = Segments completely to the left
● Iright = Segments completely to the right

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 10

Interval Tree
● Recurse down the tree only with items that DO NOT overlap the split point.

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 10

Interval Tree

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 10

● Items in Imid group will stay at the current node

● Each node stores two
two sorted lists:

● Lleft = Imid sorted by
left endpoint
(increasing)

● Lright = Imid sorted by
right endpoint
(decreasing)

Interval Tree

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 10

For a specific query

query

Interval Tree

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 10

For a specific query

● Determine if the query is to the
right (or left) of the current node

● Walk through the Lright list
(or Lleft list) which is sorted
by right (or left) endpoint
● Return segments with

endpoint further away
from the query

● Stop when you find a
segment that doesn’t
match the query

● And recurse down the right (or left)
query

Outline for Today
● Review from Last Time: Delaunay Triangulations
● Motivation: Cartography Windowing & Data Selection
● Lecture 8 Review: Points in k-D trees and Range Trees
● 1D Interval Tree
● 1D Interval Tree Analysis
● 2D Interval Tree + Range Tree
● 2D Interval Tree + Range Tree Analysis
● 2D Axis Aligned Segment Query
● Segment Tree for general 2D Segment Query
● Segment Tree Analysis
● Next Time: Quad Trees

1D Interval Tree Analysis
● For n input segments

and a query that will
return k items

● Memory Usage:

● Construction Time:

● Query Time:

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 10

1D Interval Tree Analysis
● For n input segments

and a query that will
return k items

● Memory Usage:
→ O(n)

● Construction Time:
→ O(n log n)

● Query Time:
→ O(log n + k)

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 10

Outline for Today
● Review from Last Time: Delaunay Triangulations
● Motivation: Cartography Windowing & Data Selection
● Lecture 8 Review: Points in k-D trees and Range Trees
● 1D Interval Tree
● 1D Interval Tree Analysis
● 2D Interval Tree + Range Tree
● 2D Interval Tree + Range Tree Analysis
● 2D Axis Aligned Segment Query
● Segment Tree for general 2D Segment Query
● Segment Tree Analysis
● Next Time: Quad Trees

How do we Extend to 2D?
● First consider only horizontal

input line segments
● And instead of a query line,

we’ll have a query line segment

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 10

How do we Extend to 2D?
● We’ll replace the sorted lists of the interval tree with a 2D range query

(first by x then by y) of the 2D endpoints (Lecture 8)
● This will now require additional memory…

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapters 8 & 10

Outline for Today
● Review from Last Time: Delaunay Triangulations
● Motivation: Cartography Windowing & Data Selection
● Lecture 8 Review: Points in k-D trees and Range Trees
● 1D Interval Tree
● 1D Interval Tree Analysis
● 2D Interval Tree + Range Tree
● 2D Interval Tree + Range Tree Analysis
● 2D Axis Aligned Segment Query
● Segment Tree for general 2D Segment Query
● Segment Tree Analysis
● Next Time: Quad Trees

2D Interval Tree + Range Tree Analysis
● For n horizontal input segments

and a query segment that will
return k items

● Memory Usage:

● Construction Time:

● Query Time:

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapters 8 & 10

2D Interval Tree + Range Tree Analysis
● For n horizontal input segments

and a query segment that will
return k items

● Memory Usage:
→ O(n log n)

● Construction Time:
→ O(n log n)

● Query Time:
→ O(log n + k)

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapters 8 & 10

Outline for Today
● Review from Last Time: Delaunay Triangulations
● Motivation: Cartography Windowing & Data Selection
● Lecture 8 Review: Points in k-D trees and Range Trees
● 1D Interval Tree
● 1D Interval Tree Analysis
● 2D Interval Tree + Range Tree
● 2D Interval Tree + Range Tree Analysis
● 2D Axis Aligned Segment Query
● Segment Tree for general 2D Segment Query
● Segment Tree Analysis
● Next Time: Quad Trees

How to handle a 2D Axis-Aligned Query Box?
● Initially, let’s restrict to horizontal

& vertical segments

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 10

How to handle a 2D Axis-Aligned Query Box?
● Why is Axis-Aligned

Interesting?
● A bit later we will also

restrict ourselves to
non-overlapping
segments…
Why is that interesting?

Motivation:
Circuit board layouts →

https://www.findlight.net/blog/evolution-of-laser-marking-and-engraving-technologies/

How to handle a 2D Axis-Aligned Query Box?
● Initially, let’s restrict to horizontal

& vertical segments

● Case Analysis:
Segments that touch the query box will:

● Have one endpoint inside the box,
OR

● Will have both endpoints outside the box
AND

● Will be a horizontal segment
that overlaps the left edge of the box
OR

● Will be a vertical segment
that overlaps the bottom edge of the box

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 10

How to handle a 2D Axis-Aligned Query Box?
● Initially, let’s restrict to horizontal

& vertical segments

● Case Analysis:
Segments that touch the query box will:

● Have one endpoint inside the box,
OR

● Will have both endpoints outside the box
AND

● Will be a horizontal segment
that overlaps the left edge of the box
OR

● Will be a vertical segment
that overlaps the bottom edge of the box

Handled with a
Lecture 8 2D
Range Query

Handled with
an Interval
Tree + 2D
Range Query Computational Geometry Algorithms and Applications,

de Berg, Cheong, van Kreveld and Overmars, Chapter 10

How to handle a 2D Axis-Aligned Query Box?
● Initially, let’s restrict to horizontal

& vertical segments

● Case Analysis:
Segments that touch the query box will:

● Have one endpoint inside the box,
OR

● Will have both endpoints outside the box
AND

● Will be a horizontal segment
that overlaps the left edge of the box
OR

● Will be a vertical segment
that overlaps the bottom edge of the box

Caution:
Need to prevent
duplicates in output

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 10

Outline for Today
● Review from Last Time: Delaunay Triangulations
● Motivation: Cartography Windowing & Data Selection
● Lecture 8 Review: Points in k-D trees and Range Trees
● 1D Interval Tree
● 1D Interval Tree Analysis
● 2D Interval Tree + Range Tree
● 2D Interval Tree + Range Tree Analysis
● 2D Axis Aligned Segment Query
● Segment Tree for General 2D Segment Query
● Segment Tree Analysis
● Next Time: Quad Trees

How do we handle General 2D Segments?
● Not restricted to horizontal & vertical segments!
● (Note: We will later insist that the segments do not cross…)

How do we handle General 2D Segments?
● Do the (sloppy?) Computer Graphics thing…

Output the segment if its bounding overlaps the axis-aligned query box

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 10

How do we handle General 2D Segments?
● Do the (sloppy?) Computer Graphics thing…

Output the segment if its bounding overlaps the axis-aligned query box

● We might have LOTS
of false positives!

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 10

How do we handle General 2D Segments?
● Do the (sloppy?) Computer Graphics thing…

Output the segment if its bounding overlaps the axis-aligned query box

● We might have LOTS
of false positives!

● Can we do better?
● Ensure good (output sensitive)

Performance
AND

● Avoid false positives?

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 10

Segment Tree - First Dimension (x)
● First, sort the x coordinates of the start

and end points of every segment.
● Construct a balanced binary

search tree with
these x values.

● Insert every
segment into
the structure

● If a segment
overlaps both the left and
right subranges of the node
store it at the node (do not recurse)

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 10

Segment Tree - First Dimension (x)
● For a vertical query slab

(xmin, xmax)

● Walk down the tree
● If the node is in

range, return all
items at that node

● Recurse left
and/or right
as appropriate

● & filter duplicates…
Computational Geometry Algorithms and Applications,

de Berg, Cheong, van Kreveld and Overmars, Chapter 10

xmin xmax

Segment Tree - Second Dimension (y)
● To efficiently query a

vertical range in addition
to the horizontal range:

● Sort the segments
stored at each node by y

● Remember: this is only
the segments that
completely overlaps
the node’s range

● Note: this is why we
require no crossings
in the input segments

Now we can
perform binary
search at each
node to only
return the
segments in the
vertical query
range

Segment Tree - Second Dimension (y)
● To efficiently query a

vertical range in addition
to the horizontal range:

● Sort the segments
stored at each node by y

● Remember: this is only
the segments that
completely overlaps
the node’s range

● Note: this is why we
require no crossings
in the input segments

Now we can
perform binary
search at each
node to only
return the
segments in the
vertical query
range

Outline for Today
● Review from Last Time: Delaunay Triangulations
● Motivation: Cartography Windowing & Data Selection
● Lecture 8 Review: Points in k-D trees and Range Trees
● 1D Interval Tree
● 1D Interval Tree Analysis
● 2D Interval Tree + Range Tree
● 2D Interval Tree + Range Tree Analysis
● 2D Axis Aligned Segment Query
● Segment Tree for General 2D Segment Query
● Segment Tree Analysis
● Next Time: Quad Trees

Segment Tree - Analysis
● For n input segments, for a query that will return k segments

● Memory:
Each segment is stored in
at most 2 nodes per level

● Construction Time:
Presort all endpoints
by x & y O(n log n)

● Query Time:

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 10

Segment Tree - Analysis
● For n input segments, for a query that will return k segments

● Memory:
Each segment is stored in
at most 2 nodes per level
→ O(n log n)

● Construction Time:
Presort all endpoints
by x & y O(n log n)
→ O(n log n)

● Query Time:
→ O(log n * log n + k)
→ O(log 2 n + k)

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 10

Outline for Today
● Review from Last Time: Delaunay Triangulations
● Motivation: Cartography Windowing & Data Selection
● Lecture 8 Review: Points in k-D trees and Range Trees
● 1D Interval Tree
● 1D Interval Tree Analysis
● 2D Interval Tree + Range Tree
● 2D Interval Tree + Range Tree Analysis
● 2D Axis Aligned Segment Query
● Segment Tree for General 2D Segment Query
● Segment Tree Analysis
● Next Time: Quad Trees

Next Time: Quad Trees
Input Delaunay

Uniform Non-Uniform

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 14

