CSCI 4560/6560 Computational Geometry

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Lecture 19:
General Position, Robustness
& Exact Computation

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Outline for Today

Homework 7 & Final Project Proposal Questions

Last Time: Signed Distance & Level Sets

General Position, Floating Point Equality

Numerical Computing, Divide by Zero, & Gaussian Elimination
Floating Point Bugs in Computational Geometry

Floating Point Bugs in Computer Graphics

Real RAM vs. IEEE Floating Point

Arbitrary Arithmetic with Rational and Algebraic Numbers
Symbolic Computation, Floating Point Filters, Interval Computation
Next Time: Binary Space Partition

Homework 7: Delaunay Triangulation Edge Flips

vl-v3 —> v0-v4
vli-v4 —-> vO-v2

Proposals due Monday Nov 6th uUpload to Submitty

Proposal

As you choose your topic and begin to flesh out the details, keep in mind that implementing new data
structures or algorithms can take much longer than anticipated. Also be warned that designing and
implementing even relatively simple user interfaces require alot of effort (and is not particularly relevant
to this course).

Your proposal should be formatted using pdf. The document should be a minimum of 500 words for an
individual project (equivalent of 2 pages double spaced text) or 800 words for a team of two and include:

e Abrief summary of the technical problem you are going to investigate.

» Alist of the specific research papers and other sources you've collected for background reading. Talk with
the instructor if you are unable to find at least 3 relevant academic references. Read and summarize the
contributions of each reference and describe how your project relates to this work.

e Atimeline for your assignment with a list of the tasks you will execute and who will do what. It's ok to list
optional tasks that you will work on once the core features are complete. You will be graded relative to
the completion of the core tasks, so make sure your plan is feasible.

Outline for Today

Homework 7 & Final Project Proposal Questions

Last Time: Signed Distance & Level Sets

General Position, Floating Point Equality

Numerical Computing, Divide by Zero, & Gaussian Elimination
Floating Point Bugs in Computational Geometry

Floating Point Bugs in Computer Graphics

Real RAM vs. IEEE Floating Point

Arbitrary Arithmetic with Rational and Algebraic Numbers
Symbolic Computation, Floating Point Filters, Interval Computation
Next Time: Binary Space Partition

Motivation: Collision Detection

. : “An Implicit Finite Element Method
o Detect the intersection for Elastic Solids in Contact”,

e Depth of intersection penetration Hirota, Fisher, State, Lee, & Fuchs,
e Gradient & normal of closest surface — SOl
Determine penalty force to resolve collision

Deformed

Explicit vs. Implicit Surface Representations

e \We may not be able to construct a compact mathematical function...
e But can we convert the bunny mesh into a signed distance field?

svevel
senos

Computing a Signed Distance Field

e Given a shape/surface
® Cost to compute shortest distance to original shape
for each point (on a grid) in the volume?

Naive: O(# of volume grid samples * # of surface elements) = O(w’h?)

Marching Cubes

e Each pointin the 3D grid is
labeled “inside” (red dots)
or “outside” (blue dots)
the unknown surface.

e Any cell in the grid that has
at least one red vertex and
at least one blue vertex, must be
crossed by the unknown surface.

e \We can piecewise construct an
approximation of the surface.

http://www.cs.carleton.edu/cs_comps/0405
/shape/marching_cubes.html

Marching Cubes

e 256 possible inside/outside
labelings of each grid cube.

e Merging rotations...
15 unique cases to implement

"Marching Cubes: A High Resolution 3D
Surface Construction Algorithm",
Lorensen and Cline, SIGGRAPH '87.

10

N

"Marching Cubes: A High Resolution 3D
Surface Construction Algorithm",
Lorensen and Cline, SIGGRAPH '87.

Outline for Today

Homework 7 & Final Project Proposal Questions

Last Time: Signed Distance & Level Sets

General Position, Floating Point Equality

Numerical Computing, Divide by Zero, & Gaussian Elimination
Floating Point Bugs in Computational Geometry

Floating Point Bugs in Computer Graphics

Real RAM vs. IEEE Floating Point

Arbitrary Arithmetic with Rational and Algebraic Numbers
Symbolic Computation, Floating Point Filters, Interval Computation
Next Time: Binary Space Partition

“Assuming General Position... ”

e Degeneracies in the input data cause problems

e To avoid problems in developing algorithms and
to prove the correctness and performance of those algorithms,

We will often make assumptions, e.g.:

No 2 points have the same x and same y coordinates
No 3 points are collinear

No 2 points lie on the same vertical line

No 4 points lie on the same circle

No 2 lines are parallel

Homework 4 Redux

e “A set of at least three half-planes with a
non-empty intersection such that not all
bounding lines are parallel”

e \Why put this clause in the problem statement?

Does this mean no 2 lines are in the
collection are parallel?
Or could all of the lines be parallel

except one?
|s the region guaranteed to be bounded?

Homework 4 Redux

e “A set of at least three half-planes with a
non-empty intersection such that not all
bounding lines are parallel”

e \Why put this clause in the problem statement?
e Does this mean no 2 lines are in the
collection are parallel? No
e Or could all of the lines be parallel

except one? Yes
e Is the region guaranteed to be bounded? No

Homework 4 Redux

e “A set of at least three half-planes with a
non-empty intersection such that not all
bounding lines are parallel”

e How do we approach solving this problem?

Homework 4 Redux

“A set of at least three half-planes with a
non-empty intersection such that not all
bounding lines are parallel”

How do we approach solving this problem?
Recommendation:
e Assume no lines are parallel
(every line intersects every other line)
e Assume only 2 lines intersect at a point
Once you have the general problem
solved/proved, then revisit the assumptions

\

Robustness: Floating Point Equality

e Programming Mantra: Never compare two floats or doubles with ==
e \Why not?
double a = 2/float (3);
double Db (5/3.0) * (7.0/5.0f) * (2/double(7)):;
assertl (al==/b);

Robustness: Floating Point Equality

e Programming Mantra: Never compare two floats or doubles with ==

e Why not? /5/ S 2
double a = 2/float(3);)4 /7’
doybka /b /= (B3 OO S8 BOF) = 2/double(7));
assert (a == b); <« this will probably fail!

e Even if we're more careful and use float & double consistently,
the compiler is still free to use extra precision for the values of
intermediate expressions.

e Optimized code might use registers for intermediate expressions
(which often have higher precision than required by the type).

Common Robustness Workaround

e Instead compare to a tolerance or epsilon value, e.g.,
double a = 2/float (3);
deubEe <o A NI I 7V Q AS 7 DE(FS Wy doukbtet7X) ;
assert (fabs(a-b) < 0.00001) ;

e But what is the right value for epsilon?

Common Robustness Workaround

Instead compare to a tolerance or epsilon value, e.g.,

double a = 2/float (3);

doubAe<h(A MY 320 7S VTN XS DEA TS W7 doupbte st K) ;
assert (fabs(a-b) < 0.00001) ;

But what is the right value for epsilon?

It depends on the application, data type, & overall scale of the data!
epsilon way too big — we risk computing the wrong answer
epsilon too small — the original equality rounding error issue

What if roundoff error will accumulate or compound over time?

It will likely be impossible to appropriately set an epsilon!

Outline for Today

Homework 7 & Final Project Proposal Questions

Last Time: Signed Distance & Level Sets

General Position, Floating Point Equality

Numerical Computing, Divide by Zero, & Gaussian Elimination
Floating Point Bugs in Computational Geometry

Floating Point Bugs in Computer Graphics

Real RAM vs. IEEE Floating Point

Arbitrary Arithmetic with Rational and Algebraic Numbers
Symbolic Computation, Floating Point Filters, Interval Computation
Next Time: Binary Space Partition

Numerical Computing & Divide by Zero

e For numerical computing,
divide by zero is the most common (is the only?)
precision / rounding error that may cause a program to crash

e Otherwise, the program will always return a result
e The result will be a good answer
e [t may be slightly off due to rounding error
(the error is proportional to the types — e.g., float/double),
but it is generally acceptable

Factorization by Gaussian Elimination

e When /in what course did you learn how to do this?

e Multiply & subtract lower

rows from the rows above F = = =
e We want to manipulate Up W Us Uy b,
the matrix so that 0 Uy Uy Uy b,
all values in the X =
lower triangle are zero. 0 0 Uss Us b;
e The diagonal should 0 0 0 Uy ' by |

be non-zero

Fundamentals of Numerical Computation,
Driscoll & Braun, 2017
https://fncbook.github.io/v1.0/linsys/pivoting.html

https://tobydriscoll.net/fnc

Factorization by Gaussian Elimination

A pivot or row swap is necessary
if the value in the target position
is zero and would lead to a
divide-by-zero when we try to
compute the row multiplier
necessary to produce zeros

in that column in the lower rows.

0 0 6
C0150—6

2 0 4 3
-10

0O 5 1 -4

Fundamentals of Numerical Computation,
Driscoll & Braun, 2017

https://fncbook.github.io/v1.0/linsys/pivoting.html

https://tobydriscoll.net/fnc

Factorization by Gaussian Elimination

e Divide by zero is not the only concern...
e \We should also avoid division by very small values, e.g., epsilon:

Ax =D o
Correct answer: x7—1
But we will have
A = [€ l] 5 b= [1 6‘] . robustness problems

1 . | if € is very small!

_ _ X, =1 /
[6 1 1 6] N i = 1

0 —-14¢! €el1-1

=
Il

—€

Fundamentals of Numerical Computation,
Driscoll & Braun, 2017
https://fncbook.github.io/v1.0/linsys/pivoting.html

https://tobydriscoll.net/fnc

Factorization by Gaussian Elimination

e Divide by zero is not the only concern...
e \We should also avoid division by very small values, e.g., epsilon:

AX = b Correct answer: x 1:1

. . But we will have
A = [€ l] 5 b= !1 el . robustness problems

1 | 0 if € is very small!
x, =1
—€ 1 l1-¢€ 2
| | => (1—-¢)—1
0 -1 4+ €™ e —1 X1 =
—

It’s better to pivot / swap

rows for the row with the Fundamentals of Numerical Computation,

largest value in this column Driscoll & Braun, 2017

https://fncbook.github.io/v1.0/linsys/pivoting.html

https://tobydriscoll.net/fnc

Numerical vs. Combinatorial

e Use of a tolerance or epsilon is an appropriate approach for
numerical computing (e.g. solving linear systems),
where answers being slightly off is acceptable.

e However in geometry, the goal is not to compute numbers

but rather structures (convex hull, Delaunay triangulation, etc).
e Itis a combinatorial problem, not a numerical problem.

https://www.cgal.org/exact.html

Outline for Today

Homework 7 & Final Project Proposal Questions

Last Time: Signed Distance & Level Sets

General Position, Floating Point Equality

Numerical Computing, Divide by Zero, & Gaussian Elimination
Floating Point Bugs in Computational Geometry

Floating Point Bugs in Computer Graphics

Real RAM vs. IEEE Floating Point

Arbitrary Arithmetic with Rational and Algebraic Numbers
Symbolic Computation, Floating Point Filters, Interval Computation
Next Time: Binary Space Partition

Ramshaw’s Braided Lines

e Consider 2 lines,
[: y = 0833x/9454 1,0400888512798816

1 VS.

I2 oy = 9366x/9005 1.0400888395335925

both pass through the origin,
slope of /., is slightly larger than /,

http://www.algorithmic-solutions.info/leda_guide/geometry/dangerfloat.html

#include <iostream.h> Lyle Ramshaw

Ramshaw’s Braided Li

{
amshaw’s Braided Lines «_
float delta=0.001f;
int last comp=-1;

e Consider 2 lines, float a=9833,b=9454,c=9366,d=9005;
[1 Yy = 0833x/9454 1.0400883212798816 float x;
i = 1.0400888395335925 for (x=0;x<0.1;x=x+delta) {
[, y=9366x/9005 fla s b
both pass through the origin, float y2=c*x/d;
slope of /., is slightly larger than /, int comp; L
. if (yl<y2) comp=-1;
e This program computes and else if (yl==y2) comp=0;
. 1L =1;
compares the y-value for each line at FERSiceE

multiples of 0.001 between 0 and 1 AR lorapi=last colb) € L

cout << endl << x << ": ";

if (comp==-1) cout << "1l is below 12";
if (comp==0) cout << "1l intersects 12";
else cout << "l1l1 is above 12";

}

last_comp=comp;

}

cout << endl << endl;
http://www.algorithmic-solutions.info/leda_guide/geometry/dangerfloat.html return 0;

}

#include <iostream.h> Ly/e Ramshaw

Ramshaw’s Braided Li

{
amshaw’s Braided Lines «_
float delta=0.001f;
int last comp=-1;

e Consider 2 lines, float a=9833,b=9454,c=9366,d=9005;
[1 Sy = 0833x/9454 1.0400883212798816 float x;
] = 1.0400888395335925 for (x=0;x<0.1;x=x+delta) {
L.y 9366x/9005 A S e
both pass through the origin, float y2=c*x/d;
slope of /., is slightly larger than /, int comp; L
A if (yl<y2) comp=-1;
e This program computes and else if (yl==y2) comp=0;
. 1L =1;
compares the y-value for each line at RS ISLE
multiples of 0.001 between 0 and 1 i (eoupf=lase comp) { -
cout << endl << x << ": ";

e The program outputs that |, and | if (comp==-1) cout << "1l1 is below 12";
P 2 1 2 if (comp==0) cout << "1l intersects 12";
intersect 24 times !?!1?! else cout << "11 is above 12";

}

e |f we switch float — double, it still
prints 1 false intersection (not the origin)

last_comp=comp;

}

cout << endl << endl;
http://www.algorithmic-solutions.info/leda_guide/geometry/dangerfloat.html return 0;

}

e Using floating point arithmetic: ISR WML ¥ 2
I o0 @ @ o“ .”‘ ?

e Take two random I!nes l1'and l, % tlf& 23 oW

e Compute |.ntersec.:t|on pollnt P, ‘ 3‘ aA-y— :n

e assert (point p., lies on line |.) @i .,gv’z .":‘3 AT

e assert (point p,, lies on line 1) B e XLy f
s !o.' il $ S ¥7g &
:‘ ”oo '. v,

e Orange dots = 1 assertion fails ;fﬁ:, AT

e Red dots = both assertion fails % ';\" X Wa .1.‘ X
g2t Lot W-aeh ;.: !
U Save e
®_ g 3") t X
AP LIy ":‘f)

Invited Lecture: “Real Numbers and on:.:s :.'.r @ ONINIAT

Robustness in Computational Geometry”,
Real Numbers and Computers 2004,
Stefan Schirra

Incremental Convex Hull Construction

e Make a triangle with the first 3 points

e For each additional point r
e Find an outside edge

that is “visible” from r 7 e
e Expand to a sequence of e
connected edges N Y

Vi Vi = Vip (=) =Y,

e Remove middle points

(e.g., v,, & v_,)from hull,

add point r to hull

Incremental Convex Hull Construction

Make a triangle with the first 3 points

For each additional point r
e Find an outside edge
that is “visible” from r
e Expand to a sequence of
connected edges
Vi Vi = Vip (=0) —
e Remove middle points
(e.g., v,, & v_,)from hull,

add point r to hull

V.

/

Algorithm looks great!
So how could this be
a program output????

“Geometric Computing: The Science of Making
Geometric Algorithms Work”, Kurt Mehlhorn
https://people.mpi-inf.mpg.de/~mehlhorn/ftp/SoCG09.pdf

the hull of p; to p4 is
correctly computed

ps lies close to py, lies
inside the hull of the
first four points, but
float-sees the edge

(p1,p4)-

Concave corner at ps.

point ps sees the edges

@17p2) and (P4ap5), but
does not see the edge

(ps, p1)-

we obtain ...

“Geometric Computing: The Science of Making Geometric Algorithms Work”, Kurt Mehlhorn

Ap4

This concave angle is a small,

‘“acceptable” numerical error

the hull of p; to p4 is
correctly computed

ps lies close to py, lies
inside the hull of the
first four points, but
float-sees the edge

(p1,Pa).

Concave corner at ps.

point ps sees the edges

(p1,p2) and (ps, ps), but
does not see the edge

(Ps,pl)-

we obtain ...

“Geometric Computing: The Science of Making Geometric Algorithms Work”, Kurt Mehlhorn

Ap4

This concave angle is a small,
‘“acceptable” numerical error

logical error later!

But it causes a large, unacceptable

Pa

D3

the hull of p; to p4 is
correctly computed

ps lies close to py, lies
inside the hull of the
first four points, but
float-sees the edge

(p1,Pa).

Concave corner at ps.

point ps sees the edges

(p1,p2) and (p4, ps), but
does not see the edge

(Ps,pl)-

we obtain ...

“Geometric Computing: The Science of Making Geometric Algorithms Work”, Kurt Mehlhorn

Outline for Today

Homework 7 & Final Project Proposal Questions

Last Time: Signed Distance & Level Sets

General Position, Floating Point Equality

Numerical Computing, Divide by Zero, & Gaussian Elimination
Floating Point Bugs in Computational Geometry

Floating Point Bugs in Computer Graphics

Real RAM vs. IEEE Floating Point

Arbitrary Arithmetic with Rational and Algebraic Numbers
Symbolic Computation, Floating Point Filters, Interval Computation
Next Time: Binary Space Partition

Hue indicates elevation

Possibly Hidden /
Probably Hidden:

|

o

Il

1

M

Visible = Hidden !f heightis changed
by epsilon, the
Possibly visibility flips!
hidden
Probably The visibility

|

hidden of one half
of the points
is uncertain!

m

:
|..||

iy

i

*I..

Slide from W. Randolph Franklin

Observer

Ray

N
TraC g Can “see” the light

Shadows . NOT IN SHADOW!

Ray
TraC| N g intersects light

@t=252
Shadows

ifitersects fight

intersects sphere

@i=-0.01 intersects sphere

@ t=0.01

O

Image from

Zachary Lynn

Ray Tracing Refraction

e To correctly simulate light as it
bends/refracts through a medium
denser than air (e.g., glass),
we must know when a ray enters
and when a ray exits an object.

ST https://www.mathsisfun.com/physics/refraction.html

Manage Rounding Errors in Ray Tracing

e Track which material (glass/air)
we are currently inside
e r_intersectsf,
e r _mustintersectf, orf,
but NOT both or neither!
e \We cannot miss
or double count
Intersections!
e Requires conforming
mesh, (no t-junctions) &

carefully designed intersection math
https://www.pbr-book.org/3ed-2018/Shapes/Managing Rounding_Error

Jietong Chen
https://cjt-jackton.github.io/RayTracing/

Epsilon a.k.a. Bias for Shadow Maps
(GPU hardware-accelerated technique for shadows)

Correct image Not enough bias Way too much bias

Slide from Eric Chan

Outline for Today

Homework 7 & Final Project Proposal Questions

Last Time: Signed Distance & Level Sets

General Position, Floating Point Equality

Numerical Computing, Divide by Zero, & Gaussian Elimination
Floating Point Bugs in Computational Geometry

Floating Point Bugs in Computer Graphics

Real RAM vs. IEEE Floating Point

Arbitrary Arithmetic with Rational and Algebraic Numbers
Symbolic Computation, Floating Point Filters, Interval Computation
Next Time: Binary Space Partition

Real RAM

e “Areal RAM (random-access machine) is a mathematical model of a
computer that can compute with exact real numbers instead of the binary
fixed point or floating point numbers used by most actual computers.”

e Computers can only approximate a real RAM using floating point types.
e CGAL (The Computational Geometry Algorithms Library) and
LEDA (A Library of Efficient Data Types and Algorithms)

provide tools that allow us to write programs that work like they were
running on a real RAM.

https://en.wikipedia.org/wiki/Real RAM

LEDA Data Types proprietary but free for research

Beyond standard C++ types, LEDA provides:

e integer - eliminates overflow by using unbounded
memory for large numbers

e rational - mathematical definition of rational as the
quotient of two integers.

e bigfloat - allows mantissa to be arbitrary level of precision
instead of following the IEEE standard

e real - can compute the sign of a radical expression

Also has error checking, validation, proof of correctness algorithms

https://en.wikipedia.org/wiki/Library of Efficient Data types and_Algorithms

Boost (beyond C++ STL) open source software!

e The Multiprecision Library provides C++ types for:
e integer,
e rational,
e floating-point, and
e complex numbers.
e Precision may be:
e arbitrarily large (limited only by available memory),
e fixed at compile time, or
e variable controlled at run-time.

https://www.boost.org/doc/libs/1_83_0/libs/multiprecision/doc/html/boost_multiprecision/intro.html

The IEEE Floating Point Standard

e |EEE binary32 = C/C++ float

sign exponent (8 bits) fraction (23 bits)
|1 Il |

olol1]1{1]1]1|o[o]o]|1[o]o]olofo]olo[o]o]lolofo]olofo]o]ofolo]o
31 30 2322 (bit index) 0

e |EEE binary64 = C/C++ double

= 0.15625

o O

exponent fraction
sign (11 bit) (52 bit)
I Il
o [} [}
63 52 0

e |EEE binary128 = [not (yet?) support by most hardware]

exponent fraction

sign (15 bit) (112 bit)
I)

:
e T T T T T TR
0

° ©
127 112

https://en.wikipedia.org/wiki/Single-precision_floating-point_format

Programming Example with lrrational Numbers

e Problem: Given 5 points with integer coordinates,
find the nearest neighbor to point a
e Compute the length of lines ab, ac, ad, ae
e length(ab) = sart ((X, %,)"(X,%,) *+ (¥, -¥,) (V. ¥,))
e Note: the sqrt, will likely create irrational numbers!
e Sort the lengths, return endpoint for shortest line length

Recommendation: Avoid Creating Irrational Numbers

e Problem: Given 5 points with integer coordinates,
find the nearest neighbor to point a
e Compute the length of lines ab, ac, ad, ae
e length(ab) = sart ((X, %,)"(X,%,) *+ (¥, -¥,) (V. ¥,))
e Note: the sqrt, will likely create irrational numbers!
e Sort the lengths, return endpoint for shortest line length

e Instead... compute & sort the squares of the line lengths
e squared_length(ab) = (x_-x,)*(x-x,) + (V.-V,)"(V.-¥,)
e This is an integer! (because we have integer inputs)

e This will always return the correct answer to the original question.
WITHOUT creating irrational numbers!

Outline for Today

Homework 7 & Final Project Proposal Questions

Last Time: Signed Distance & Level Sets

General Position, Floating Point Equality

Numerical Computing, Divide by Zero, & Gaussian Elimination
Floating Point Bugs in Computational Geometry

Floating Point Bugs in Computer Graphics

Real RAM vs. IEEE Floating Point

Arbitrary Arithmetic with Rational and Algebraic Numbers
Symbolic Computation, Floating Point Filters, Interval Computation
Next Time: Binary Space Partition

Arbitrary Precision Arithmetic

e If we do not have irrational numbers in our program...
e We can store integers using a “BigNum?” infinite precision integer type

RBignum

RBasic e 64 bit binary integer =

s ~19 bit base 10 integer
- 31 0 63 32 . B
as — | [000000..000000000]010000..000000000 ® RSA Security requires at least
len=2 100 binary digits, but
= — recommends 1000+ binary digits

klass

digits ———————{11001000001.. |01110110100.. {11110010000... | 10100100000../110010011001..

11001000001.. (01110110100.. {11110010000...| 10100100000.../110010011001..

len =10

https://patshaughnessy.net/2014/1/9/how-big-is-a-bignum

Arbitrary Precision Arithmetic

e If we do not have irrational numbers in our program...
e \We can store rational numbers as a ratio of two BigNums
e Reduce fractions whenever possible to minimize storage:

49578 95151508905425869578
—]

74367 42727263358138804367 3

https://algorist.com/problems/Arbitrary-Precision_Arithmetic.html

What if we cannot avoid Irrational Numbers?

e The dimensions of regular D
pentagon cannot be expressed
with rational numbers!

e Hippasos used a geometric

: C
analog of Euclid's algorithm ‘4
to show that the ratio d,/s, W
Is an irrational number. i

http://www.hellenicaworld.com/Greece/Science/en/Pentagon.html A B

https://en.wikipedia.org/wiki/Algebraic_number

Algebraic Number

e A number that is a root of a non-zero

polynomial in one variable with integer

(or, equivalently, rational) coefficients.
e 2 is an algebraic number
e The golden ratio, @ = (1 +V5) /2 = 1.61803

is an algebraic number, it is a root of x> — x — 1
e All rational numbers are algebraic
e Some irrational numbers (e.g., V2 & @) are algebraic
e Some irrational numbers are NOT algebraic

e 1 =3.14159 is not algebraic

° ini: b by +o = 2.71828 is not algebraic

Outline for Today

Homework 7 & Final Project Proposal Questions

Last Time: Signed Distance & Level Sets

General Position, Floating Point Equality

Numerical Computing, Divide by Zero, & Gaussian Elimination
Floating Point Bugs in Computational Geometry

Floating Point Bugs in Computer Graphics

Real RAM vs. IEEE Floating Point

Arbitrary Arithmetic with Rational and Algebraic Numbers
Symbolic Computation, Floating Point Filters, Interval Computation
Next Time: Binary Space Partition

So, What’s done in Practice?

e Input point coordinates are rational
e If we can limit to linear primitives — straight lines, not curves...
then the computations for most geometric problems will be rational,
or at least algebraic.
e \We can write software to implement & use basic arithmetic operations
with all of the necessary types:
iIntegers, big-nums, rational numbers, and even algebraic numbers
e And this is exactly what CGAL is doing with all of those C++ templates & typedefs!
e Much of this can also be made to work with nonlinear primitives too!
e Avoid creating irrational numbers by working symbolically until output

Improving Performance

e The challenge is efficiency.

CGAL: overhead for exact computation = 25% - 80% (depending on algorithm)
See also https://www.cqgal.org/exact.html

e User is responsible for understanding exact vs. inexact computation

Writing good CGAL code (non-buggy, robust, accurate, and fast) takes skill
Leverage both non-exact and exact kernels in different places in same program

e Implementation of CGAL (& other libraries) is clever...

Don’t use exact computation unless necessary

Work with floating point approximations most of the time

“Floating point filters”: Automatically switch from a floating point representation to
exact computation when the numbers are close to a floating point tolerance.

Use symbolic / lazy adaptive evaluation to delay exact computation until

and only if it is actually necessary

https://www.cgal.org/exact.html

Alternative for Real Number Computation?

e Take imprecision into account when designing and proving the algorithms
e “Topology oriented implementation”
e Program will always return an answer, even if all computations are
replaced by random numbers
e Never crashes because of inconsistencies
e Has been done for some problems & algorithms in
Computational Geometry

e However, because most proofs rely on “assume general position” or
small tricks like “rotate everything a tiny amount” to break ties
Most work in Computational Geometry would need to be redone!

Outline for Today

Homework 7 & Final Project Proposal Questions

Last Time: Signed Distance & Level Sets

General Position, Floating Point Equality

Numerical Computing, Divide by Zero, & Gaussian Elimination
Floating Point Bugs in Computational Geometry

Floating Point Bugs in Computer Graphics

Real RAM vs. IEEE Floating Point

Arbitrary Arithmetic with Rational and Algebraic Numbers
Symbolic Computation, Floating Point Filters, Interval Computation
Next Time: Binary Space Partition

Next Time: Painter’s Algorithm & Binary Space Partition

Bob Ross - “Peaceful Waters”
https://www.twoinchbrush.com/painting/peaceful-waters

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

