
CSCI 4560/6560 Computational Geometry
https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Lecture 19:
General Position, Robustness

& Exact Computation

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Outline for Today
● Homework 7 & Final Project Proposal Questions
● Last Time: Signed Distance & Level Sets
● General Position, Floating Point Equality
● Numerical Computing, Divide by Zero, & Gaussian Elimination
● Floating Point Bugs in Computational Geometry
● Floating Point Bugs in Computer Graphics
● Real RAM vs. IEEE Floating Point
● Arbitrary Arithmetic with Rational and Algebraic Numbers
● Symbolic Computation, Floating Point Filters, Interval Computation
● Next Time: Binary Space Partition

Homework 7: Delaunay Triangulation Edge Flips

Proposals due Monday Nov 6th Upload to Submitty

Outline for Today
● Homework 7 & Final Project Proposal Questions
● Last Time: Signed Distance & Level Sets
● General Position, Floating Point Equality
● Numerical Computing, Divide by Zero, & Gaussian Elimination
● Floating Point Bugs in Computational Geometry
● Floating Point Bugs in Computer Graphics
● Real RAM vs. IEEE Floating Point
● Arbitrary Arithmetic with Rational and Algebraic Numbers
● Symbolic Computation, Floating Point Filters, Interval Computation
● Next Time: Binary Space Partition

Motivation: Collision Detection
● Detect the intersection
● Depth of intersection penetration
● Gradient & normal of closest surface –

Determine penalty force to resolve collision

“An Implicit Finite Element Method
for Elastic Solids in Contact”,

Hirota, Fisher, State, Lee, & Fuchs,
SCA 2001

Explicit vs. Implicit Surface Representations
● We may not be able to construct a compact mathematical function…
● But can we convert the bunny mesh into a signed distance field?

Computing a Signed Distance Field
● Given a shape/surface

● Cost to compute shortest distance to original shape

for each point (on a grid) in the volume?

Naive: O(# of volume grid samples * # of surface elements) = O(w2h2)

Marching Cubes

http://www.cs.carleton.edu/cs_comps/0405
/shape/marching_cubes.html

● Each point in the 3D grid is
labeled “inside” (red dots)
or “outside” (blue dots)
the unknown surface.

● Any cell in the grid that has
at least one red vertex and
at least one blue vertex, must be
crossed by the unknown surface.

● We can piecewise construct an
approximation of the surface.

Marching Cubes

"Marching Cubes: A High Resolution 3D
Surface Construction Algorithm",

Lorensen and Cline, SIGGRAPH '87.

● 256 possible inside/outside
labelings of each grid cube.

● Merging rotations…
15 unique cases to implement

"Marching Cubes: A High Resolution 3D
Surface Construction Algorithm",

Lorensen and Cline, SIGGRAPH '87.

Outline for Today
● Homework 7 & Final Project Proposal Questions
● Last Time: Signed Distance & Level Sets
● General Position, Floating Point Equality
● Numerical Computing, Divide by Zero, & Gaussian Elimination
● Floating Point Bugs in Computational Geometry
● Floating Point Bugs in Computer Graphics
● Real RAM vs. IEEE Floating Point
● Arbitrary Arithmetic with Rational and Algebraic Numbers
● Symbolic Computation, Floating Point Filters, Interval Computation
● Next Time: Binary Space Partition

“Assuming General Position… ”
● Degeneracies in the input data cause problems

● To avoid problems in developing algorithms and
to prove the correctness and performance of those algorithms,

We will often make assumptions, e.g.:

● No 2 points have the same x and same y coordinates
● No 3 points are collinear
● No 2 points lie on the same vertical line
● No 4 points lie on the same circle
● No 2 lines are parallel

Homework 4 Redux
● “A set of at least three half-planes with a

non-empty intersection such that not all
bounding lines are parallel”

● Why put this clause in the problem statement?
● Does this mean no 2 lines are in the

collection are parallel?
● Or could all of the lines be parallel

except one?
● Is the region guaranteed to be bounded?

Homework 4 Redux
● “A set of at least three half-planes with a

non-empty intersection such that not all
bounding lines are parallel”

● Why put this clause in the problem statement?
● Does this mean no 2 lines are in the

collection are parallel? No
● Or could all of the lines be parallel

except one? Yes
● Is the region guaranteed to be bounded? No

Homework 4 Redux
● “A set of at least three half-planes with a

non-empty intersection such that not all
bounding lines are parallel”

● How do we approach solving this problem?

Homework 4 Redux
● “A set of at least three half-planes with a

non-empty intersection such that not all
bounding lines are parallel”

● How do we approach solving this problem?
● Recommendation:

● Assume no lines are parallel
(every line intersects every other line)

● Assume only 2 lines intersect at a point
● Once you have the general problem

solved/proved, then revisit the assumptions

Robustness: Floating Point Equality
● Programming Mantra: Never compare two floats or doubles with ==
● Why not?

double a = 2/float(3);
double b = (5/3.0) * (7.0/5.0f) * (2/double(7));
assert (a == b);

Robustness: Floating Point Equality
● Programming Mantra: Never compare two floats or doubles with ==
● Why not?

double a = 2/float(3);
double b = (5/3.0) * (7.0/5.0f) * (2/double(7));
assert (a == b); ← this will probably fail!

● Even if we’re more careful and use float & double consistently,
the compiler is still free to use extra precision for the values of
intermediate expressions.

● Optimized code might use registers for intermediate expressions
(which often have higher precision than required by the type).

5
3

7
5

2
7* *

2
3=

Common Robustness Workaround
● Instead compare to a tolerance or epsilon value, e.g.,

double a = 2/float(3);
double b = (5/3.0) * (7.0/5.0f) * (2/double(7));
assert (fabs(a-b) < 0.00001);

● But what is the right value for epsilon?

Common Robustness Workaround
● Instead compare to a tolerance or epsilon value, e.g.,

double a = 2/float(3);
double b = (5/3.0) * (7.0/5.0f) * (2/double(7));
assert (fabs(a-b) < 0.00001);

● But what is the right value for epsilon?
It depends on the application, data type, & overall scale of the data!

● epsilon way too big → we risk computing the wrong answer
● epsilon too small → the original equality rounding error issue
● What if roundoff error will accumulate or compound over time?

It will likely be impossible to appropriately set an epsilon!

Outline for Today
● Homework 7 & Final Project Proposal Questions
● Last Time: Signed Distance & Level Sets
● General Position, Floating Point Equality
● Numerical Computing, Divide by Zero, & Gaussian Elimination
● Floating Point Bugs in Computational Geometry
● Floating Point Bugs in Computer Graphics
● Real RAM vs. IEEE Floating Point
● Arbitrary Arithmetic with Rational and Algebraic Numbers
● Symbolic Computation, Floating Point Filters, Interval Computation
● Next Time: Binary Space Partition

Numerical Computing & Divide by Zero
● For numerical computing,

divide by zero is the most common (is the only?)
precision / rounding error that may cause a program to crash

● Otherwise, the program will always return a result
● The result will be a good answer
● It may be slightly off due to rounding error

(the error is proportional to the types – e.g., float/double),
but it is generally acceptable

Factorization by Gaussian Elimination
● When / in what course did you learn how to do this?

● Multiply & subtract lower
rows from the rows above

● We want to manipulate
the matrix so that
all values in the
lower triangle are zero.

● The diagonal should
be non-zero

Fundamentals of Numerical Computation,
Driscoll & Braun, 2017

https://fncbook.github.io/v1.0/linsys/pivoting.html

https://tobydriscoll.net/fnc

Factorization by Gaussian Elimination
● A pivot or row swap is necessary

if the value in the target position
is zero and would lead to a
divide-by-zero when we try to
compute the row multiplier
necessary to produce zeros
in that column in the lower rows.

Fundamentals of Numerical Computation,
Driscoll & Braun, 2017

https://fncbook.github.io/v1.0/linsys/pivoting.html

https://tobydriscoll.net/fnc

Factorization by Gaussian Elimination
● Divide by zero is not the only concern…
● We should also avoid division by very small values, e.g., epsilon:

Fundamentals of Numerical Computation,
Driscoll & Braun, 2017

https://fncbook.github.io/v1.0/linsys/pivoting.html

Correct answer: x1=1
But we will have

robustness problems
if ε is very small!

https://tobydriscoll.net/fnc

Factorization by Gaussian Elimination
● Divide by zero is not the only concern…
● We should also avoid division by very small values, e.g., epsilon:

Fundamentals of Numerical Computation,
Driscoll & Braun, 2017

https://fncbook.github.io/v1.0/linsys/pivoting.html

Correct answer: x1=1
But we will have

robustness problems
if ε is very small!

It’s better to pivot / swap
rows for the row with the

largest value in this column

https://tobydriscoll.net/fnc

Numerical vs. Combinatorial
● Use of a tolerance or epsilon is an appropriate approach for

numerical computing (e.g. solving linear systems),
where answers being slightly off is acceptable.

● However in geometry, the goal is not to compute numbers
but rather structures (convex hull, Delaunay triangulation, etc).

● It is a combinatorial problem, not a numerical problem.

https://www.cgal.org/exact.html

Outline for Today
● Homework 7 & Final Project Proposal Questions
● Last Time: Signed Distance & Level Sets
● General Position, Floating Point Equality
● Numerical Computing, Divide by Zero, & Gaussian Elimination
● Floating Point Bugs in Computational Geometry
● Floating Point Bugs in Computer Graphics
● Real RAM vs. IEEE Floating Point
● Arbitrary Arithmetic with Rational and Algebraic Numbers
● Symbolic Computation, Floating Point Filters, Interval Computation
● Next Time: Binary Space Partition

Ramshaw’s Braided Lines
● Consider 2 lines,

l1 : y = 9833x/9454
l2 : y = 9366x/9005

both pass through the origin,
slope of l1 is slightly larger than l2

http://www.algorithmic-solutions.info/leda_guide/geometry/dangerfloat.html

1.0400888512798816
vs.

1.0400888395335925

Ramshaw’s Braided Lines
● Consider 2 lines,

l1 : y = 9833x/9454
l2 : y = 9366x/9005

both pass through the origin,
slope of l1 is slightly larger than l2

● This program computes and
compares the y-value for each line at
multiples of 0.001 between 0 and 1

http://www.algorithmic-solutions.info/leda_guide/geometry/dangerfloat.html

Lyle Ramshaw

1.0400888512798816
vs.

1.0400888395335925

Ramshaw’s Braided Lines
● Consider 2 lines,

l1 : y = 9833x/9454
l2 : y = 9366x/9005

both pass through the origin,
slope of l1 is slightly larger than l2

● This program computes and
compares the y-value for each line at
multiples of 0.001 between 0 and 1

● The program outputs that l1 and l2
intersect 24 times !?!?!

● If we switch float → double, it still
prints 1 false intersection (not the origin)

http://www.algorithmic-solutions.info/leda_guide/geometry/dangerfloat.html

Lyle Ramshaw

1.0400888512798816
vs.

1.0400888395335925

● Using floating point arithmetic:
● Take two random lines l1 and l2
● Compute intersection point p12
● assert (point p12 lies on line l1)
● assert (point p12 lies on line l2)

● Orange dots = 1 assertion fails
● Red dots = both assertion fails

Invited Lecture: “Real Numbers and
Robustness in Computational Geometry”,

Real Numbers and Computers 2004,
Stefan Schirra

● Make a triangle with the first 3 points

● For each additional point r
● Find an outside edge

that is “visible” from r
● Expand to a sequence of

connected edges
vi → vi+1 → vi+2 (→ …) → vj

● Remove middle points
(e.g., vi+1 & vi+2) from hull,
add point r to hull

vi+1

Incremental Convex Hull Construction

vi+2

● Make a triangle with the first 3 points

● For each additional point r
● Find an outside edge

that is “visible” from r
● Expand to a sequence of

connected edges
vi → vi+1 → vi+2 (→ …) → vj

● Remove middle points
(e.g., vi+1 & vi+2) from hull,
add point r to hull “Geometric Computing: The Science of Making

Geometric Algorithms Work”, Kurt Mehlhorn
https://people.mpi-inf.mpg.de/~mehlhorn/ftp/SoCG09.pdf

Incremental Convex Hull Construction

Algorithm looks great!
So how could this be
a program output????

“Geometric Computing: The Science of Making Geometric Algorithms Work”, Kurt Mehlhorn

“Geometric Computing: The Science of Making Geometric Algorithms Work”, Kurt Mehlhorn

This concave angle is a small,
“acceptable” numerical error

“Geometric Computing: The Science of Making Geometric Algorithms Work”, Kurt Mehlhorn

This concave angle is a small,
“acceptable” numerical error

But it causes a large, unacceptable
logical error later!

Outline for Today
● Homework 7 & Final Project Proposal Questions
● Last Time: Signed Distance & Level Sets
● General Position, Floating Point Equality
● Numerical Computing, Divide by Zero, & Gaussian Elimination
● Floating Point Bugs in Computational Geometry
● Floating Point Bugs in Computer Graphics
● Real RAM vs. IEEE Floating Point
● Arbitrary Arithmetic with Rational and Algebraic Numbers
● Symbolic Computation, Floating Point Filters, Interval Computation
● Next Time: Binary Space Partition

Possibly Hidden /
Probably Hidden:

If height is changed
by epsilon, the
visibility flips!

The visibility
of one half

of the points
is uncertain!

Slide from W. Randolph Franklin

Can “see” the light
NOT IN SHADOW!

Sightline to
light blocked
IN SHADOW!

Ray
Tracing
Shadows

so we add epsilon
into our ray tracing

intersects sphere
@ t = 0.01

intersects sphere
@ t = -0.01

Image from
Zachary Lynn

intersects sphere
@ t = 10.6

intersects sphere
@ t = 14.3

intersects light
@ t = 25.2

intersects light
@ t = 26.9

Ray
Tracing
Shadows

● To correctly simulate light as it
bends/refracts through a medium
denser than air (e.g., glass),
we must know when a ray enters
and when a ray exits an object.

Ray Tracing Refraction

https://www.mathsisfun.com/physics/refraction.html

● Track which material (glass/air)
we are currently inside
● ra intersects f1
● rb must intersect f1 or f2

but NOT both or neither!
● We cannot miss

or double count
intersections!

● Requires conforming
mesh, (no t-junctions) &
carefully designed intersection math

Manage Rounding Errors in Ray Tracing

Jietong Chen
https://cjt-jackton.github.io/RayTracing/

f2

f1

ra

rb

https://www.pbr-book.org/3ed-2018/Shapes/Managing_Rounding_Error

Epsilon a.k.a. Bias for Shadow Maps
(GPU hardware-accelerated technique for shadows)

Correct image Not enough bias Way too much bias

Slide from Eric Chan

Outline for Today
● Homework 7 & Final Project Proposal Questions
● Last Time: Signed Distance & Level Sets
● General Position, Floating Point Equality
● Numerical Computing, Divide by Zero, & Gaussian Elimination
● Floating Point Bugs in Computational Geometry
● Floating Point Bugs in Computer Graphics
● Real RAM vs. IEEE Floating Point
● Arbitrary Arithmetic with Rational and Algebraic Numbers
● Symbolic Computation, Floating Point Filters, Interval Computation
● Next Time: Binary Space Partition

Real RAM
● “A real RAM (random-access machine) is a mathematical model of a

computer that can compute with exact real numbers instead of the binary
fixed point or floating point numbers used by most actual computers.”

● Computers can only approximate a real RAM using floating point types.

● CGAL (The Computational Geometry Algorithms Library) and
LEDA (A Library of Efficient Data Types and Algorithms)
provide tools that allow us to write programs that work like they were
running on a real RAM.

https://en.wikipedia.org/wiki/Real_RAM

LEDA Data Types proprietary but free for research

Beyond standard C++ types, LEDA provides:
● integer - eliminates overflow by using unbounded

memory for large numbers
● rational - mathematical definition of rational as the

quotient of two integers.
● bigfloat - allows mantissa to be arbitrary level of precision

instead of following the IEEE standard
● real - can compute the sign of a radical expression

Also has error checking, validation, proof of correctness algorithms

https://en.wikipedia.org/wiki/Library_of_Efficient_Data_types_and_Algorithms

Boost (beyond C++ STL) open source software!

● The Multiprecision Library provides C++ types for:
● integer,
● rational,
● floating-point, and
● complex numbers.

● Precision may be:
● arbitrarily large (limited only by available memory),
● fixed at compile time, or
● variable controlled at run-time.

https://www.boost.org/doc/libs/1_83_0/libs/multiprecision/doc/html/boost_multiprecision/intro.html

● IEEE binary32 = C/C++ float

● IEEE binary64 = C/C++ double

● IEEE binary128 = [not (yet?) support by most hardware]

The IEEE Floating Point Standard

https://en.wikipedia.org/wiki/Single-precision_floating-point_format

Programming Example with Irrational Numbers
● Problem: Given 5 points with integer coordinates,

find the nearest neighbor to point a
● Compute the length of lines ab, ac, ad, ae

● length(ab) = sqrt ((xa-xb)*(xa-xb) + (ya-yb)*(ya-yb))
● Note: the sqrt, will likely create irrational numbers!

● Sort the lengths, return endpoint for shortest line length

a

b

c

d

e

Recommendation: Avoid Creating Irrational Numbers

● Problem: Given 5 points with integer coordinates,
find the nearest neighbor to point a

● Compute the length of lines ab, ac, ad, ae
● length(ab) = sqrt ((xa-xb)*(xa-xb) + (ya-yb)*(ya-yb))
● Note: the sqrt, will likely create irrational numbers!

● Sort the lengths, return endpoint for shortest line length

● Instead… compute & sort the squares of the line lengths
● squared_length(ab) = (xa-xb)*(xa-xb) + (ya-yb)*(ya-yb)
● This is an integer! (because we have integer inputs)

● This will always return the correct answer to the original question.
WITHOUT creating irrational numbers!

a

b

c

d

e

Outline for Today
● Homework 7 & Final Project Proposal Questions
● Last Time: Signed Distance & Level Sets
● General Position, Floating Point Equality
● Numerical Computing, Divide by Zero, & Gaussian Elimination
● Floating Point Bugs in Computational Geometry
● Floating Point Bugs in Computer Graphics
● Real RAM vs. IEEE Floating Point
● Arbitrary Arithmetic with Rational and Algebraic Numbers
● Symbolic Computation, Floating Point Filters, Interval Computation
● Next Time: Binary Space Partition

Arbitrary Precision Arithmetic
● If we do not have irrational numbers in our program…
● We can store integers using a “BigNum” infinite precision integer type

● 64 bit binary integer =
~19 bit base 10 integer

● RSA Security requires at least
100 binary digits, but
recommends 1000+ binary digits

https://patshaughnessy.net/2014/1/9/how-big-is-a-bignum

Arbitrary Precision Arithmetic
● If we do not have irrational numbers in our program…
● We can store rational numbers as a ratio of two BigNums
● Reduce fractions whenever possible to minimize storage:

https://algorist.com/problems/Arbitrary-Precision_Arithmetic.html

What if we cannot avoid Irrational Numbers?
● The dimensions of regular

pentagon cannot be expressed
with rational numbers!

● Hippasos used a geometric
analog of Euclid's algorithm
to show that the ratio d0 / s0
is an irrational number.

http://www.hellenicaworld.com/Greece/Science/en/Pentagon.html

Algebraic Number
● A number that is a root of a non-zero

polynomial in one variable with integer
(or, equivalently, rational) coefficients.

● √2 is an algebraic number
● The golden ratio, φ = (1 + √5) / 2 ≃ 1.61803

is an algebraic number, it is a root of x2 − x − 1
● All rational numbers are algebraic
● Some irrational numbers (e.g., √2 & φ) are algebraic
● Some irrational numbers are NOT algebraic

● π ≃ 3.14159 is not algebraic

● e ≃ 2.71828 is not algebraic

https://en.wikipedia.org/wiki/Algebraic_number

Outline for Today
● Homework 7 & Final Project Proposal Questions
● Last Time: Signed Distance & Level Sets
● General Position, Floating Point Equality
● Numerical Computing, Divide by Zero, & Gaussian Elimination
● Floating Point Bugs in Computational Geometry
● Floating Point Bugs in Computer Graphics
● Real RAM vs. IEEE Floating Point
● Arbitrary Arithmetic with Rational and Algebraic Numbers
● Symbolic Computation, Floating Point Filters, Interval Computation
● Next Time: Binary Space Partition

So, What’s done in Practice?
● Input point coordinates are rational
● If we can limit to linear primitives – straight lines, not curves…

then the computations for most geometric problems will be rational,
or at least algebraic.

● We can write software to implement & use basic arithmetic operations
with all of the necessary types:
integers, big-nums, rational numbers, and even algebraic numbers
● And this is exactly what CGAL is doing with all of those C++ templates & typedefs!

● Much of this can also be made to work with nonlinear primitives too!
● Avoid creating irrational numbers by working symbolically until output

Improving Performance
● The challenge is efficiency.

● CGAL: overhead for exact computation = 25% - 80% (depending on algorithm)
● See also https://www.cgal.org/exact.html

● User is responsible for understanding exact vs. inexact computation
● Writing good CGAL code (non-buggy, robust, accurate, and fast) takes skill
● Leverage both non-exact and exact kernels in different places in same program

● Implementation of CGAL (& other libraries) is clever…
● Don’t use exact computation unless necessary
● Work with floating point approximations most of the time
● “Floating point filters”: Automatically switch from a floating point representation to

exact computation when the numbers are close to a floating point tolerance.
● Use symbolic / lazy adaptive evaluation to delay exact computation until

and only if it is actually necessary

https://www.cgal.org/exact.html

Alternative for Real Number Computation?
● Take imprecision into account when designing and proving the algorithms
● “Topology oriented implementation”

● Program will always return an answer, even if all computations are
replaced by random numbers

● Never crashes because of inconsistencies
● Has been done for some problems & algorithms in

Computational Geometry

● However, because most proofs rely on “assume general position” or
small tricks like “rotate everything a tiny amount” to break ties
Most work in Computational Geometry would need to be redone!

Outline for Today
● Homework 7 & Final Project Proposal Questions
● Last Time: Signed Distance & Level Sets
● General Position, Floating Point Equality
● Numerical Computing, Divide by Zero, & Gaussian Elimination
● Floating Point Bugs in Computational Geometry
● Floating Point Bugs in Computer Graphics
● Real RAM vs. IEEE Floating Point
● Arbitrary Arithmetic with Rational and Algebraic Numbers
● Symbolic Computation, Floating Point Filters, Interval Computation
● Next Time: Binary Space Partition

Next Time: Painter’s Algorithm & Binary Space Partition

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Bob Ross - “Peaceful Waters”
https://www.twoinchbrush.com/painting/peaceful-waters

