
CSCI 4560/6560 Computational Geometry
https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Lecture 20:
Binary Space

Partitions

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Outline for Today
● Homework 7 & Final Project Proposal Feedback
● Last Time: General Position, Robustness, & Exact Computation
● Line Drawings & Early Computer Vision / AI
● Hidden Line Drawing: z-Buffer
● Hidden Line Drawing: Painter’s Algorithm
● Binary Space Partition
● Binary Space Partition Analysis
● Discussion & Comparison to Quad Tree & kD Tree
● Final Project 3D Visualization Challenges
● Next Time: Polyominoes & Tiling

Homework 7
● Ok if your solution is not the shortest path

(e.g., it has unnecessary edits that are later reverted)

…

Final Project Proposals & Progress Post #1
● If you haven’t submitted your proposal yet, please do so ASAP
● I’ve graded the Final Project Proposals, Common feedback includes:

● Missing a title!
● Who is your audience? Your classmates! Describe technical details as

appropriate (prereqs & technical content covered in lecture/hw)
● Project scope is vague / project scope is likely too large
● Didn’t describe a specific set of examples / sample data that will allow

you to debug your work and prepare for presentation & report
● Didn’t include full bibliography citations, didn’t use a standard callout

within document to the bibliography, e.g., “[1]” or “(Smith 2010)”
● If you would like to revise & re-submit your proposal you can do that…

Or just take the feedback and use it when you write your final project report
● Progress Post #1 due on Monday Nov 13th on Submitty forum

Outline for Today
● Homework 7 & Final Project Proposal Feedback
● Last Time: General Position, Robustness, & Exact Computation
● Line Drawings & Early Computer Vision / AI
● Hidden Line Drawing: z-Buffer
● Hidden Line Drawing: Painter’s Algorithm
● Binary Space Partition
● Binary Space Partition Analysis
● Discussion & Comparison to Quad Tree & kD Tree
● Final Project 3D Visualization Challenges
● Next Time: Polyominoes & Tiling

Factorization by Gaussian Elimination
● Divide by zero is not the only concern…
● We should also avoid division by very small values, e.g., epsilon:

Fundamentals of Numerical Computation,
Driscoll & Braun, 2017

https://fncbook.github.io/v1.0/linsys/pivoting.html

Correct answer: x1=1
But we will have

robustness problems
if ε is very small!

It’s better to pivot / swap
rows for the row with the

largest value in this column

https://tobydriscoll.net/fnc

● Make a triangle with the first 3 points

● For each additional point r
● Find an outside edge

that is “visible” from r
● Expand to a sequence of

connected edges
vi → vi+1 → vi+2 (→ …) → vj

● Remove middle points
(e.g., vi+1 & vi+2) from hull,
add point r to hull “Geometric Computing: The Science of Making

Geometric Algorithms Work”, Kurt Mehlhorn
https://people.mpi-inf.mpg.de/~mehlhorn/ftp/SoCG09.pdf

Incremental Convex Hull Construction

Algorithm looks great!
So how could this be
a program output????

Avoid Creating Irrational Numbers
● Problem: Given 5 points with integer coordinates,

find the nearest neighbor to point a
● Compute the length of lines ab, ac, ad, ae

● length(ab) = sqrt ((xa-xb)*(xa-xb) + (ya-yb)*(ya-yb))
● Note: the sqrt, will likely create irrational numbers!

● Sort the lengths, return endpoint for shortest line length

● Instead… compute & sort the squares of the line lengths
● squared_length(ab) = (xa-xb)*(xa-xb) + (ya-yb)*(ya-yb)
● This is an integer!

● This will always return the correct answer to the original question.
WITHOUT creating irrational numbers!

a

b

c

d

e

Arbitrary Precision Arithmetic
● If we do not have irrational numbers in our program…
● We can store integers using a “BigNum” infinite precision integer type

https://patshaughnessy.net/2014/1/9/how-big-is-a-bignum

● 64 bit binary integer =
~19 bit base 10 integer

● RSA Security requires at least
100 binary digits, but
recommends 1000+ binary digits

Arbitrary Precision Arithmetic
● If we do not have irrational numbers in our program…
● We can store rational numbers as a ratio of two BigNums
● Reduce fractions whenever possible to minimize storage:

https://algorist.com/problems/Arbitrary-Precision_Arithmetic.html

Outline for Today
● Homework 7 & Final Project Proposal Feedback
● Last Time: General Position, Robustness, & Exact Computation
● Line Drawings & Early Computer Vision / AI
● Hidden Line Drawing: z-Buffer
● Hidden Line Drawing: Painter’s Algorithm
● Binary Space Partition
● Binary Space Partition Analysis
● Discussion & Comparison to Quad Tree & kD Tree
● Final Project 3D Visualization Challenges
● Next Time: Polyominoes & Tiling

Motivation: Summer Vision Project
● “Summer Vision Project”

1966
10 undergraduate students
at MIT were tasked with
solving computer vision

It was a “BHAG”:
Big Hairy Audacious Goal

Did they (professor/students)
realize it at the time???

Motivation: Early AI & Early Computer Vision

http://www-g.eng.cam.ac.uk/mmg/teaching/artificialintelligence/nonflash/constraint2.htm

Line Labeling
Constraint
Propagation
“Interpretation of
opaque, trihedral solids
with no surface marks”,
Huffman & Clowes,
1971

“Compute Labeling
through Local
Propagation”
Waltz, 1972

Motivation: Early AI & Early Computer Vision

MIT 6.034 Artificial Intelligence, Fall 2010
Open CourseWare
https://www.youtube.com/watch?v=l-tzjenXrvI

Necker Cube
● A two dimensional

representation of
a three dimensional
wire frame cube

● Viewer’s perception
can flips back and
forth between
equally possible
perspectives

https://commons.wikimedia.org/wiki/File:Necker%27s_cube.svg

https://www.newworldencyclopedia.org/entry/necker_cube

Impossible Objects

● Penrose triangle

● Devil's tuning fork

https://simple.wikipedia.org/wiki/Impossible_object

“Combining Deep Learning and Active Contours
Opens The Way to Robust, Automated Analysis of
Brain Cytoarchitectonics”, Thierbach et al, 2018

Belvedere
M.C. Escher

1958

Impossible Objects

https://www.researchgate.net/publication/345642812_Combining_Deep_Learning_and_Active_Contours_Opens_The_Way_to_Robust_Automated_Analysis_of_Brain_Cytoarchitectonics
https://www.researchgate.net/publication/345642812_Combining_Deep_Learning_and_Active_Contours_Opens_The_Way_to_Robust_Automated_Analysis_of_Brain_Cytoarchitectonics
https://www.researchgate.net/publication/345642812_Combining_Deep_Learning_and_Active_Contours_Opens_The_Way_to_Robust_Automated_Analysis_of_Brain_Cytoarchitectonics

Bump or Divot?
● How many dots are raised higher than the surrounding surface?
● How many are indented pushed in/lower than the surrounding surface?

Bump or Divot?
● How many dots are raised higher than the surrounding surface?
● How many are indented pushed in/lower than the surrounding surface?

this is the
same image,
just rotated 180°

Lighting Assumptions
● Where is the light

source in 3D?
● Why do we

assume that?

https://www.easydrawingtips.com/shading-basic-3d-shape-drawings-tutorial/

Shape from Shading
● Surface normal + light position →

greyscale pixel value

“Shape from Shading: A Survey”
Zhang, Tsai, Cryer & Shah, 1999

Shape from Shading
● Surface normal + light position →

greyscale pixel value

● Assumption: surface is smooth
(normal/gradient changes slowly)

● Given a light position + pixel color →
a set of possible surface normals (not unique)

● Given 2 light positions + 2 pixel colors →
constrained to one possible surface normal!

● Reverse engineer a global smooth & connected
surface that matches the estimated surface normal

“Shape from Shading: A Survey”
Zhang, Tsai, Cryer & Shah, 1999

Shape from Shading

“Shape from Shading: A Survey”
Zhang, Tsai, Cryer & Shah, 1999

output from different
“shape from shading”

algorithms

synthetic
3D input
meshes

renderings of
input mesh
from 2 different
lighting positions

Outline for Today
● Homework 7 & Final Project Proposal Feedback
● Last Time: General Position, Robustness, & Exact Computation
● Line Drawings & Early Computer Vision / AI
● Hidden Line Drawing: z-Buffer
● Hidden Line Drawing: Painter’s Algorithm
● Binary Space Partition
● Binary Space Partition Analysis
● Discussion & Comparison to Quad Tree & kD Tree
● Final Project 3D Visualization ChallengesNext Time:

Polyominoes & Tiling

Hidden Line Drawing / Depth Buffer (z-Buffer)
● Given a primitive's vertices

& the color / illumination
at each vertex:

● Figure out which pixels
to "turn on" to render
the primitive

● Interpolate the color /
illumination values to
"fill in" the primitive

● At each pixel,
keep track of the
closest primitive
(depth buffer / z-buffer)

glBegin(GL_TRIANGLES)
glNormal3f(...)
glVertex3f(...)
glVertex3f(...)
glVertex3f(...)
glEnd();

frame buffer

depth buffer

Triangles can be in any order!
A.k.a. “Polygon soup”

Scan Conversion / Rendering Pipeline

frame buffer

depth buffernear

far

camera/eye

● Running time of depth buffer / z-buffer?

● Extra memory use for depth buffer / z-buffer?

● Flaws with depth buffer / z-buffer?

Scan Conversion / Rendering Pipeline

frame buffer

depth buffernear

far

camera/eye

● Running time of depth buffer / z-buffer?
→ O(n * w * h) worst case large triangles
→ O(n) in practice

● Extra memory use for depth buffer / z-buffer?
→ O(w*h) * 8 bits or 24 bits or 32 bits
In early graphics, this was
too expensive to consider!

● Flaws with depth buffer / z-buffer?
● Limited precision
● Need to choose near &

far plane carefully

Outline for Today
● Homework 7 & Final Project Proposal Feedback
● Last Time: General Position, Robustness, & Exact Computation
● Line Drawings & Early Computer Vision / AI
● Hidden Line Drawing: z-Buffer
● Hidden Line Drawing: Painter’s Algorithm
● Binary Space Partition
● Binary Space Partition Analysis
● Discussion & Comparison to Quad Tree & kD Tree
● Final Project 3D Visualization Challenges
● Next Time: Polyominoes & Tiling

Hidden Line Drawing: Painter’s Algorithm
● Let’s order the primitives by how close they are to the camera
● Draw the primitives from back to front
● Then we don’t need to keep track of the depth!

Save memory!

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Bob Ross -
Peaceful Waters
Season 3
Episode 13

https://www.twoinchbrush.com/
painting/peaceful-waters

Hidden Line Drawing: Painter’s Algorithm
● Let’s order the primitives by how

close they are to the camera
● Draw the primitives from back to front

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Hidden Line Drawing: Painter’s Algorithm
● Let’s order the primitives by how

close they are to the camera
● Draw the primitives from back to front

● Warning: Object layering may
be complex and have cycles
E.g., a > b, b > c, c > a

● Solution: Split primitives as
necessary to break cycles

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Outline for Today
● Homework 7 & Final Project Proposal Feedback
● Last Time: General Position, Robustness, & Exact Computation
● Line Drawings & Early Computer Vision / AI
● Hidden Line Drawing: z-Buffer
● Hidden Line Drawing: Painter’s Algorithm
● Binary Space Partition
● Binary Space Partition Analysis
● Discussion & Comparison to Quad Tree & kD Tree
● Final Project 3D Visualization Challenges
● Next Time: Polyominoes & Tiling

Definition: Binary Space Partition
● Place items in a binary tree, each node stores a half plane
● Primitives that are collinear with the half plane are stored in the node
● Items overlapping a half plane are copied/split into two primitives
● We recurse until exactly one item is left, it is stored in the leaf

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Auto-Partition
● In practice, it is common to use

the primitives as half-planes
● If a BSP only uses half-planes

derived from the input data,
it is called an auto-partition

● Primitive is stored at the node
(rather than pushed
 down to a leaf)
● So it will probably be

smaller…
● But the optimal partitioning

(minimal # of nodes) may
require hyperplanes that are
not derived from the input!

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Using a BSP to Render via Painter’s Algorithm
● If we’re at a leaf,

● Render items in current node
● Else if camera to left of current node hyperplane

● Recurse to right of current node
● Render items in current node
● Recurse to left of current node

● Else if camera is to right of current node hyperplane
● Recurse to left of current node
● Render items in current node
● Recurse to right of current node

● Else we’re on the split plane
(we can ignore items in current node)
● Recurse to left of current node
● Recurse to right of current node Computational Geometry Algorithms and Applications,

de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Outline for Today
● Homework 7 & Final Project Proposal Feedback
● Last Time: General Position, Robustness, & Exact Computation
● Line Drawings & Early Computer Vision / AI
● Hidden Line Drawing: z-Buffer
● Hidden Line Drawing: Painter’s Algorithm
● Binary Space Partition
● Binary Space Partition Analysis
● Discussion & Comparison to Quad Tree & kD Tree
● Final Project 3D Visualization Challenges
● Next Time: Polyominoes & Tiling

Analysis: Using BSP for Painter’s Algorithm
● For n non-intersecting primitives
● Best case:

● Worst case:

● Overall: Painter’s algorithm

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Analysis: Using BSP for Painter’s Algorithm
● For n non-intersecting primitives
● Best case:

● No primitives are split
● O(n) nodes in the tree
● Tree is perfectly balanced, height = O(log n)

● Worst case:
● Every primitive is split by every plane
● O(n2) nodes in the tree
● Tree is unbalanced, height = O(n)

● Overall: Painter’s algorithm
● O(# of nodes in the tree)
● (height is irrelevant!)

● Can we do better than worst case??
Computational Geometry Algorithms and Applications,

de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Small Optimization: “Free Split”
● Assumption: Our input

primitives do not intersect

● If we can determine
that both primitive endpoints
are on the half plane
boundaries of the current
subtree

● Choosing that primitive
as the next half plane node
is guaranteed not to split
any primitives

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Randomized Incremental Construction
● Note: Some orderings are better than others:

(result in fewer split primitives)

● Let’s randomize the order!

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Randomized Incremental Construction
● Let’s randomize the order!

s0, s1, s2, …. si …. sk …

● What’s the chance that a
primitive sk will be split by
the half plane derived from si ?

● If there are many other
segments between si and sk
there is a good chance
one of them will shield sk
from being split by si

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Randomized Incremental Construction
● Let’s randomize the order!

s0, s1, s2, …. si …. sk …

● Randomized BSP
can be shown to be
have O(n log n) nodes

● And can be constructed
in O(n2 log n)

● Which is better than our worst case
But still doesn’t seem great…

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Review of Segment Tree - (Lecture 16)
● For n input segments, for a query that will return k segments

● Memory:
Each segment is stored in
at most 2 nodes per level
→ O(n log n)

● Construction Time:
Presort all endpoints
by x & y O(n log n)
→ O(n log n)

● Query Time:
→ O(log n * log n + k)
→ O(log 2 n + k)

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 10

Outline for Today
● Homework 7 & Final Project Proposal Feedback
● Last Time: General Position, Robustness, & Exact Computation
● Line Drawings & Early Computer Vision / AI
● Hidden Line Drawing: z-Buffer
● Hidden Line Drawing: Painter’s Algorithm
● Binary Space Partition
● Binary Space Partition Analysis
● Discussion & Comparison to Quad Tree & kD Tree
● Final Project 3D Visualization Challenges
● Next Time: Polyominoes & Tiling

Discussion - Quad Tree, kD Tree, BSP

k-D TreeQuad Tree BSP

Discussion - Quad Tree, kD Tree, BSP
● k-D trees are a special case of BSP (where splits are always axis aligned)
● Quad trees are a special case of k-D trees

(where splits are always at the midpoints)

k-D TreeQuad Tree BSP

Discussion - Quad Tree, kD Tree, BSP
● Points (zero area) can be stored efficiently in any of these structures
● Items that have dimension and overlap split point are more complicated

k-D TreeQuad Tree BSP

Discussion - BSP & Low Density Scenes
● BSP are harder to visualize, and therefore perhaps harder to intuitively

understand, debug, and analyze
● Usually the performance of a BSP is much

better than the conclusion reached by
randomized analysis.

● Why?
● In practice most objects are relatively small
● In practice density of objects in a scene is sparse
● Therefore it is likely the objects can be

separated by planes without requiring the
expected worst case number of splits

● For more details, see analysis in the book… Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Outline for Today
● Homework 7 & Final Project Proposal Feedback
● Last Time: General Position, Robustness, & Exact Computation
● Line Drawings & Early Computer Vision / AI
● Hidden Line Drawing: z-Buffer
● Hidden Line Drawing: Painter’s Algorithm
● Binary Space Partition
● Binary Space Partition Analysis
● Discussion & Comparison to Quad Tree & kD Tree
● Final Project 3D Visualization Challenges
● Next Time: Polyominoes & Tiling

Bounding Spheres for Collision Detection
Fangyuan Ding, 2013

Hair Simulation
Helen Lei Zefanya Putri, 2017

Visualization of Binary Space Partition
Casey Shields, 2007

Static Visualization of 3D Structures is Challenging!

Final Project (Visualization/User Interface) Suggestions

● 3D is difficult
● Recommended to start with very simple examples in 2D
● Ok to limit yourself to 2D (it’s a short project)

● Building high quality, intuitive user interfaces is challenging
and really time consuming
● Recommended to skip building a fancy user interface

● Visualization / diagramming is important for debugging
● Visualization / diagramming is important for communication

● How will you communicate your project to your peers?
(Our last day of class is Final Project Presentations!)

● Will you give a live demo of your project during your presentation?
● What images / screenshots / diagrams / graphs of data will you include

in your final project report?

Outline for Today
● Homework 7 & Final Project Proposal Feedback
● Last Time: General Position, Robustness, & Exact Computation
● Line Drawings & Early Computer Vision / AI
● Hidden Line Drawing: z-Buffer
● Hidden Line Drawing: Painter’s Algorithm
● Binary Space Partition
● Binary Space Partition Analysis
● Discussion & Comparison to Quad Tree & kD Tree
● Final Project 3D Visualization Challenges
● Next Time: Polyominoes & Tiling

Next Time:
Polyominos

● There are
12 unique
5-ominoes
(a.k.a.
pentominoes)

“Ch 14: Polyominoes”, Barequet, Golomb, & Klarner,
Handbook of Discrete and Computational Geometry, 2018

