CSCI 4560/6560 Computational Geometry

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/

Lecture 25: Sprouts \&
 Brussel Sprouts

Outline for Today

- Final Project Presentation Schedule
- Last Time: Robot Motion Planning, Minkowski Sums, etc.
- Paper \& Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts \& Brussel Sprouts
- Next Time: Final Project Presentations!

Final Project Presentation Schedule

8 min for individual +1 min for questions, 16 min for team of $2+2$ min for questions
2:00
2:18
2:27
2:36
2:54
3:03
3:12
3:30
3:39
3:48 done!

Outline for Today

- Final Project Presentation Schedule
- Last Time: Robot Motion Planning, Minkowski Sums, etc.
- Paper \& Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts \& Brussel Sprouts
- Next Time: Final Project Presentations!

Robot Degree of Freedom (DOF)

2D w/ Translation only $\rightarrow 2$ DOF

2D w/ Translation \& Rotation $\rightarrow 3$ DOF

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 13

Configuration Space

- The dimensions of configuration space match the DOF of the robot
- Usually configuration space is higher dimensional than the environment/workspace
- It is often useful to construct, visualize, and even solve the problem in "configuration space"
work space

Motion Planning Graph - Analysis

- Size of Trapezoid Map $\rightarrow \mathrm{O}(\mathrm{n})$
- Build Trapezoid Map
$\rightarrow \mathrm{O}(\mathrm{n} \log \mathrm{n})$
- Locate start/end trapezoid \rightarrow O(log n)
- Breadth first search
$\rightarrow \mathrm{O}(\mathrm{n})$

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 13
"C-Space Tunnel Discovery for Puzzle Path Planning",

Searching Configuration Space

Zhang, Belfer, Kry, \& Voucha, SIGGRAPH 2020.

- Dimensionality becomes infeasible to construct \& exhaustively search
- Randomized search is necessary

Outline for Today

- Final Project Presentation Schedule
- Last Time: Robot Motion Planning, Minkowski Sums, etc.
- Paper \& Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts \& Brussel Sprouts
- Next Time: Final Project Presentations!

Sprouts Game Rules

- Draw n spots
- Players take turns:
- Draw a line joining two spots, or a single spot to itself.
- The line must not cross another line or pass through another spot.
- Draw a spot on the new line.
- No more than three lines can emerge from any spot.
- Normal Winning Condition: Winner is last person to make a move
- Misère Winning Condition: Winner is first person who cannot make a move

Sprouts Analysis

- Starting with n dots
- What's the maximum number of turns?

What's the maximum number of lines drawn?
What's the maximum number of new points added?

Sprouts Analysis

- Starting with n dots
- What's the minimum number of turns?

Definition: Planar Graph

- Can be drawn in 2D without any edges crossing

NOT planar:

Sprout Game Tree

Even for just

2 starting spots,
the full tree
of moves is
surprisingly large!

Sprout Game Tree Normal Play

Maximum \# moves $=5$
If the game ends
in 5 moves,
Player 1 makes
the last move
Player 2
and wins

Sprout Game Tree Normal Play

If Player 2 can separate and isolate the
2 final dots,
ending in
4 moves,
they win!
Player 2

Player 2 Wins

Sprout Game Tree Misère Play
 ree

Flip the condition:
Player who makes last move loses

Does this mean Player 1 can guarantee
a win?
Player 2

$$
0
$$

Player 1 Wins

Sprout Game Tree Misère Play

Nope! Player 2 is still the winner with perfect play

Player 2

Player 1 Wins

Outline for Today

- Final Project Presentation Schedule
- Last Time: Robot Motion Planning, Minkowski Sums, etc.
- Paper \& Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts \& Brussel Sprouts
- Next Time: Final Project Presentations!

Sprouts Computer Analysis

Number of Spots	1	2	3	4	5	6	7	8	9	10	11
normal play	2	2	1	1	1	2	2^{*}	2^{*}	1^{*}	1^{*}	1^{*}
misère play	1	2	2	2	1^{*}	1^{*}	2^{*}	2^{*}	2^{*}		

A"1" means the first player to move has a winning strategy, a "2" means the second player has a winning strategy, and an asterisk indicates a new result obtained by our program.

The n-spot Sprouts positions evaluated so far fall into a remarkably simple pattern, characterized by the following conjecture:

Sprouts conjecture. The first player has a winning strategy in n-spot Sprouts if and only if n is 3 , 4 , or 5 modulo 6 . STILL HOLDS!

The data for misère Sprouts fit a similar pattern.
Misère sprouts conjecture. The first player has a winning strategy in n-spot misère Sprouts if and only if n is 0 or 1 modulo 5. LATER DISPROVEN

Definition: Graph Isomorphism

Two graphs are isomorphic if there is a bijection between the labels of the graphs, and an edge exists between a pair of vertices in one graph if and only if an edge exists between the corresponding vertices in the other graph.

Graph G Graph H | An isomorphism |
| :--- |
| between G and H |

Sprouts Analysis Definitions

- Each spot is given a unique name.
- The curves of the sprout graph divide the plane into regions.

- The loop of spots and curves surrounding a region is called a boundary.
- The sprout graph can be encoded in set representation: $\{\{$ (abcdhfcb) (ijkj) (I) $\}$ \{ (cfed) $\}\{$ (degh) $\}$ ((efhg) $\}$ \}

Sprouts Analysis Move Definitions

A two-boundary move joins spot x on boundary B_{1} to spot y on boundary B_{2} and adds spot z. Boundaries B_{1} and B_{2} are now joined. No new regions are formed.

A one-boundary move connects spots on the same boundary of region R.
Region R is split into two subregions R_{1} and R_{2}. All boundaries of and within R must be designated for R_{1}, or R_{2}.

Note: 2^{k-1} ways to
-
 group k boundaries

Sprouts Analysis Representation Simplification

The String representation can be simplified/compressed:

- Spots of degree 3 can be thrown away
- Regions with fewer than 2 lives

```
abb`ijkj\bulletl`|•|g•|g`|
``` can be thrown away

\(\stackrel{\bullet}{l}\)

\section*{Sprouts Analysis Representation Simplification}

The String representation can be simplified/compressed:

- Spots of degree 3 can be thrown away
- Regions with fewer than 2 lives can be thrown away
- Boundaries with no live spots can be thrown away
- Spots of degree zero or one do not appear on more than one boundary, so they don't need unique names, label them 0 and 1.
- If a degree two spot has no live spots between its two occurrences on one boundary, it only needs to be listed once.

\section*{Sprouts Analysis Pseudocode}
Input sprout graph
function eval \((P)\)
\(S \leftarrow\) successors \((P)\)
if \(S\) is empty the-boundary moves all legal one-boundary
for each position \(P^{\prime} \in S\) do
if \(P^{\prime}\) is in the hash table return "W"
for each position \(P^{\prime} \in S\) do
if eval \(\left(P^{\prime}\right)\) is "L" then return "W"
put \(P\) into the hash table;
return "L"

\section*{Sprouts Analysis Implementation}
- Lexicographically sort the boundaries \& regions to remove (significantly reduce) duplicate/isomorphic graphs.
- Use a hash table to store compressed set representation of all sprout graphs that we have previously examined \& labeled "W" or "L".
- Implementation notes with 1990 hardware: may be different now
- Memory was a more significant resource limitation than CPU/time.
- There are 10X more "W" configurations than "L" configurations.
- Therefore, only store "L" configurations in the hash table \& recompute successors when needed.

\section*{Sprouts Perfect Play Winner - Normal Play}
\begin{tabular}{|r|c|r|r|r|}
\hline \begin{tabular}{c}
Number \\
of spots
\end{tabular} & \begin{tabular}{c}
Value of \\
game
\end{tabular} & \begin{tabular}{c}
Cpu seconds \\
(on a DEC 5000)
\end{tabular} & \begin{tabular}{c}
\# of positions \\
in hash table
\end{tabular} & \begin{tabular}{c}
size of hash \\
table (in bytes)
\end{tabular} \\
\hline 1 & L & \(<0.1\) & 1 & 101 \\
2 & L & \(<0.1\) & 4 & 606 \\
3 & W & \(<0.1\) & 7 & 606 \\
4 & W & 0.2 & 33 & 1515 \\
5 & W & 1.1 & 114 & 2828 \\
6 & L & 5.9 & 338 & 4070 \\
7 & L & & 75.8 & 1843
\end{tabular}
\[
\text { Analysis now complete through } n=44 \text { (2011) }
\]
"Computer Analysis of Sprouts", Applegate, Jacobson, \& Sleator, 1991

Conjecture: Player 1 wins if \# spots \(\% 6==3,4\), or 5

\section*{Sprouts Perfect Play Winner - Misère Play}
\begin{tabular}{|r|c|r|r|r|}
\hline \begin{tabular}{c}
Number \\
of spots
\end{tabular} & \begin{tabular}{c}
Value of \\
game
\end{tabular} & \begin{tabular}{c}
Cpu seconds \\
(on a DEC 5000)
\end{tabular} & \begin{tabular}{c}
\# of positions \\
in hash table
\end{tabular} & \begin{tabular}{c}
size of hash \\
table (in bytes)
\end{tabular} \\
\hline 1 & W & \(<0.1\) & 1 & 202 \\
2 & L & \(<0.1\) & 5 & 303 \\
3 & L & \(<0.1\) & 11 & 606 \\
4 & L & 0.1 & 37 & 1010 \\
5 & W & 1.1 & 219 & 2307 \\
6 & W & 8.5 & 18.9 & 1805 \\
7 & L & hours & 44.0 & 4970
\end{tabular}

Analysis now complete through \(n=20\) (2011)
"Computer Analysis of Sprouts", Applegate, Jacobson, \& Sleator, 1991

13 MB ,
max memory
for DEC was
8-480MB (after 1991?)

Original Conjecture was later disproven
Current Conjecture: Player 1 wins when \# spots \(\% 6=0,4\), or 5
EXCEPTIONS: Player 1 wins if \# spots \(==1\) and Player 1 loses if \# spots \(==4\)

\section*{Discussion: Interactive Sprouts Implementation}
- I couldn't find a good interactive, sketch-based digital Sprouts game Many versions seem to require Flash, so I don't know if they were any good
- What is hard about making a computer/phone implementation of Sprouts?
"Implementation of Sprouts: a graph drawing game" Cizek \& Balko, Graph Drawing 2021

\section*{Challenge 1:}

Free form input drawings degenerate \& make positions confusing over time

Use forces to move each vertex
such that no crossing is introduced
https://algo.cs.uni-tuebingen.de/gd2021/data/uploads/Day\%203/Session\%203/Sprouts.pdf
"Implementation of Sprouts: a graph drawing game"
Cizek \& Balko, Graph Drawing 2021
Challenge 2: Enormous Game Tree
Challenge 3: Drawing a Computer Move

https://algo.cs.uni-tuebingen.de/gd2021/data/uploads/Day\%203/Session\%203/Sprouts.pdf
"Implementation of Sprouts: a graph drawing game" Cizek \& Balko, Graph Drawing 2021
triangulate surrounding region

unique intertwining of the spindle

https://algo.cs.uni-tuebingen.de/gd2021/data/uploads/Day\%203/Session\%203/Sprouts.pdf
"Implementation of Sprouts: a graph drawing game" Cizek \& Balko, Graph Drawing 2021
- Support games up to 20 spots
- Perfect AI on up to 11 spots

https://kam.mff.cuni.cz/~cizek/Sprouts/win_x64/

\section*{Outline for Today}
- Final Project Presentation Schedule
- Last Time: Robot Motion Planning, Minkowski Sums, etc.
- Paper \& Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts \& Brussel Sprouts
- Next Time: Final Project Presentations!

\section*{Brussel Sprouts Variant Game Rules}
- Draw \(n\) crosses
- Players take turns:
- Draw a line
joining two
cross "legs".
- Draw a hash mark
across the new line
(a new "cross" position).
- No more than four lines can emerge from any cross.

3

6

1

4

7

2

5

\(\theta\)

\section*{Brussel Sprouts Analysis}
- We start with \(n\) crosses and 4* \(n\) live 'leg's
- Each move adds a line, uses up two legs, and adds two legs
- Does it ever end?

\section*{Brussel Sprouts Analysis}
- Yes, in fact it does end!
- Every face contains at least one live leg
- We are done when no face has more than one live leg
- It must follow Euler's Characteristic for Planar Graphs:
- Let \(m=\#\) of moves
- \(\#\) of edges \(=e=2 m\)
- \# of vertices \(=v=n+m\) (we start with \(n\), and we add one each move)
- \# of faces \(=4 n\), there is exactly 1 free end inside of each face at the end
- \(2=f-e+v\)
- \(2=4 n-2 m+n+m\)
- \(\#\) of moves \(=m=5 n-2\)

\section*{Outline for Today}
- Final Project Presentation Schedule
- Last Time: Robot Motion Planning, Minkowski Sums, etc.
- Paper \& Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts \& Brussel Sprouts
- Next Time: Final Project Presentations!

\section*{Hybrid Sprouts \& Brussel Sprouts Game Rules}
- Start with a mix of dots and/or crosses (which player's choice?)
- Draw a line connecting a dot or cross to itself or another dot or cross (player choice) and add a dot or a cross to the line (player choice)

\section*{Hybrid Sprouts \& Brussel Sprouts Analysis}

For \(\mathrm{n}=1\)

\section*{Hybrid Sprouts \& Brussel Sprouts Analysis}

If we start with one dot. the game has 2 moves

If we start with one cross.. the game has 2 or 3 moves

\(+\)

\section*{Hybrid Sprouts \& Brussel Sprouts Analysis}

For \(\mathrm{n}=2\) ?

\section*{Hybrid Sprouts \& Brussel Sprouts Analysis}

For \(\mathrm{n}=2\) ?

Actually... for \(n>1\) : Analysis is not completed! (according to Wikipedia)

\section*{Outline for Today}
- Final Project Presentation Schedule
- Last Time: Robot Motion Planning, Minkowski Sums, etc.
- Paper \& Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts \& Brussel Sprouts
- Next Time: Final Project Presentations!

\section*{Final Presentation}
- Summarize prior work as necessary

Can assume peers know algorithms/structures/papers from lecture
- Be technical:

What were the challenges?
How did you solve them?
- Live demo / video / lots of images (depends on project) Use plenty of examples (both of success \& failure)
- Teams of 2: Both should present \& make it clear who did what
- Use your time wisely! Practice! \& Time yourself!

I will stop you mid-sentence if you run over

\section*{Well-written Research Paper / Report}
- Motivation / Context / Related Work
- Accomplishments / Contributions of this work
- Clear description of algorithm
- Sufficiently-detailed to allow work to be reproduced
- Work is theoretically sound (hacks/arbitrary constants discouraged, but must be documented)
- Results
- Well chosen examples
- Clear tables/illustrations/visualizations with descriptive captions!
- Conclusions \& Potential Future Work
- Limitations of the method are clearly stated
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Nov 27, Final Project \\
Progress Post \#2 \\
due @ 11:59pm
\end{tabular} & \begin{tabular}{l}
Nov 28, Lecture 24: \\
Robot Motion Planning \\
Textbook Reading: \\
- CGAA Chapter 13
\end{tabular} & & \begin{tabular}{l}
Dec 1, \\
Quiz 2
\end{tabular} \\
\hline & \begin{tabular}{l}
Dec 5, Lecture 25: \\
Sprouts \& Brussels Sprouts
\end{tabular} & \begin{tabular}{l}
Dec 7, Final Project \\
Written Report \\
due @ 11:59pm
\end{tabular} & \begin{tabular}{l}
Dec 8, \\
Final Project Presentations
\end{tabular} \\
\hline \begin{tabular}{l}
Dec 11-13, \\
Reading days \\
No classes
\end{tabular} & \begin{tabular}{l}
Dec 14-15, \\
Other RPI Final Exams \\
(no Final Exam for Computational Geometry)
\end{tabular} \\
\hline \begin{tabular}{l}
Dec 18-20, \\
Other RPI Final Exams \\
(no Final Exam for Comptuational Geometry)
\end{tabular} & \\
\hline
\end{tabular}```

