


Penr ose Tiling 

At the end of a 1975 Scientific American column on tiling 
the plane periodically with congruent convex polygons (reprinted in my 
Time Travel and Other Mathematical Bewilderments) I promised a later 
column on nonperiodic tiling. This chapter reprints my fulfillment of 
that promise -a 1977 column that reported for the first time a remark- 
able nonperiodic tiling discovered by Roger Penrose, the noted British 
mathematical physicist and cosmologisr. First, let me give some defini- 
tions and background. 

A periodic tiling is one on which you can outline a region that tiles 
the plane by translation, that is, by shifting the position of the region 
without rotating or reflecting it. M. C. Escher, the Dutch artist, is famous 
for his many pictures of periodic tilings with shapes that resemble living 
things. Figure 1 is typical. An adjacent black and white bird constitute a 
fundamental region that tiles by translation. Think of the plane as being 
covered with transparent paper on which each tile is outlined. Only if the 
tiling is periodic can you shift the paper, without rotation, to a new 
position where all outlines again exactly fit. 

An infinity of shapes - for instance the regular hexagon - tile only 
periodically. An infinity of other shapes tile both periodically and non- 
periodically. A checkerboard is easily converted to a nonperiodic tiling 
by identical isosceles right triangles or by quadrilaterals. Simply bisect 
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1988 M C Escher He~rs Cordon Art - Baarn - Holland 

Figure 1 A periodic tessellation by M.  C .  Escher (1949) 

each square as shown in Figure 2A, left, altering the orientations to 
prevent periodicity. It is also easy to tile nonperiodically with dominoes. 

Isoceles triangles also tile in the radial fashion shown in the center of 
Figure 2A. Although the tiling is highly ordered, it is obviously not 
periodic. As Michael Goldberg pointed out in a 1955 paper titled "Cen- 
tral Tessellations," such a tiling can be sliced in half, and then the half 
planes can be shifted one step or more to make a spiral form of nonper- 
iodic tiling, as shown in Figure 2A, right. The triangle can be distorted in 
an infinity of ways by replacing its two equal sides with congruent lines, 
as shown at the left in Figure 2B. If the new sides have straight edges, the 
result is a polygon of 5, 7, 9, 11 . . . edges that tiles spirally. Figure 3 
shows a striking pattern obtained in this way from a nine-sided polygon. 
It was first found by Heinz Voderberg in a complicated procedure. 
Goldberg's method of obtaining it makes it almost trivial. 

In all known cases of nonperiodic tiling by congruent figures the 
figure also tiles periodically. Figure 2B, right, shows how two of the 
Voderberg enneagons go together to make an octagon that tiles periodi- 
cally in an obvious way. 

Another kind of nonperiodic tiling is obtained by tiles that group 
together to form larger replicas of themselves. Solomon W. Golomb 
calls them "reptiles." (See Chapter 19 of my book Unexpected  Hanging.) 
Figure 4 shows how a shape called the "sphinx" tiles nonperiodically by 
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giving rise to ever larger sphinxes. Again, two sphinxes (with one sphinx 
rotated 180 degrees) tile periodically in an obvious way. 

Are there sets of tiles that tile only nonperi~dicall~? By "only" we 
mean that neither a single shape or subset nor the entire set tiles periodi- 
cally, but that by using all of them a nonperiodic tiling is possible. 
Rotating and reflecting tiles are allowed. 

For many decades experts believed no such set exists, but: the suppo- 
sition proved to be untrue. In 1961 Hao Wang became interested in 
tiling the plane with sets of unit squares whose edges were colored in 
various ways. They are called Wang dominoes, and Wang wrote a splen- 
did article about them for Scientific American in 1965. Wang's problem 
was to find a procedure for deciding whether any given set of dominoes 
will tile by placing them so that abutting edges are the same color. 
Rotations and reflections are not allowed. The problem is important 
because it relates to decision questions in symbolic logic. Wang conjec- 
tured that any set of tiles which can tile the plane can tile it periodically 
and showed that if this is the case, there is a decision procedu~re for such 
tiling. 

In 1964 Robert Berger, in his thesis for a doctorate from Harvard 
University in applied mathematics, showed that Wang's conjecture is 

Figure 2 (A) Nonperiodic tiling with congruent shapes (B)  An enrzeagon 
(dotted at left) and a pair of enneagons (right) forming czn octagon 
that tiles periodically 



Figure 3 A spiral tiling by Heinz Voderberg 

Figure 4 Three generations of sphinxes i n  a nonperiodic tiling 
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false. There is no general procedure. Therefore there is a s'et of Wang 
dominoes that tiles only nonperiodically. Berger constructecl such a set, 
using more than 20,000 dominoes. Later he found a much smaller set of 
104, and Donald Knuth was able to reduce the number to 92. 

It is easy to change such a set of Wang dominoes into polygonal tiles 
that tile only nonperiodically. You simply put projections and slots on 
the edges to make jigsaw pieces that fit in the manner fol-merly pre- 
scribed by colors. An edge formerly one color fits only another formerly 
the same color, and a similar relation obtains for the other colors. By 
allowing such tiles to rotate and reflect Robinson construclted six tiles 
(see Figure 5) that force nonperiodicity in the sense explained above. In 
1977 Robert Ammann found a different set of six tiles that; also force 
nonperiodicity. Whether tiles of this square type can be reduced to less 
than six is not known, though there are strong grounds for believing six 
to be the minimum. 

At the University of Oxford, where he is Rouse Ball P'rofessor of 
Mathematics, Penrose found small sets of tiles, not of the square type, 

Figure 5 Raphael M.  Robinson's six tiles that force a nonperiodic tiling 
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that force nonperiodicity. Although most of his work is in relativity 
theory and quantum mechanics, he continues the active interest in 
recreational mathematics he shared with his geneticist father, the late 
L. S. Penrose. (They are the inventors of the famous "Penrose staircase" 
that goes round and round without getting higher; Escher depicted it in 
his lithograph "Ascending and Descending.") In 1973 Penrose found a 
set of six tiles that force nonperiodicity. In 1974 he found a way to 
reduce them to four. Soon afterward he lowered them to two. 

Because the tiles lend themselves to commercial puzzles, Penrose 
was reluctant to disclose them until he had applied for patents in the 
United Kingdom, the United States and Japan. The patents are now in 
force. I am equally indebted to John Horton Conway for many of the 
results of his study of the Penrose tiles. 

The shapes of a pair of Penrose tiles can vary, but the most interest- 
ing pair have shapes that Conway calls "darts" and "kites." Figure 6A 
shows how they are derived from a rhombus with angles of 72 and 108 
degrees. Divide the long diagonal in the familiar golden ratio of (1 + 
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Figure 6 (A) Construction of dart and kite (B) A coloring (black and gray) 
of dart and kite to force nonperiodicity (C) Aces and bow ties that 
speed constructions 



I'enrose Tiling 7 

6 ) / 2  = 1.61803398 . . . , then join the point to the obtuse corners. That 
is all. Let phi stand for the golden ratio. Each line segment is either 1 or 
phi as indicated. The smallest angle is 36 degrees, and the other angles 
are multiples of it. 

The rhombus of course tiles periodically, but we are not allowed to 
join the pieces in this manner. Forbidden ways of joining sides of equal 
length can be enforced by bumps and dents, but there are sinnpler ways. 
For example, we can label the corners H and T (heads and tails) as is 
shown in Figure 6B, and then give the rule that in fitting edges only 
corners of the same letter may meet. Dots of two colors could be placed 
in the corners to aid in conforming to this rule, but a prettier method, 
proposed by Conway, is to draw circular arcs of two colors on each tile, 
shown in the illustration as black and gray. Each arc cuts the sides as 
well as the axis of symmetry in the golden ratio. Our rule is that abutting 
edges must join arcs of the same color. 

To appreciate the full beauty and mystery of Penrose tiling one 
should make at least 100 kites and 60 darts. The pieces need be colored 
on one side only. The number of pieces of the two shapes are (like their 
areas) in the golden ratio. You might suppose you need more of the 
smaller darts, but it is the other way around. You need 1.618 . . . as 
many kites as darts. In an infinite tiling this proportion is exact. The 
irrationality of the ratio underlies a proof by Penrose that lhe tiling is 
nonperiodic because if it were periodic, the ratio clearly would have to 
be rational. 

A good plan is to draw as many darts and kites as you can on one 
sheet, with a ratio of about five kites to three darts, using a thin line for 
the curves. The sheet can be photocopied many times. The curves can 
then be colored with, say, red and green felt-tip pens. Conwqy has found 
that it speeds constructions and keeps patterns stabler if you imake many 
copies of the three larger shapes as is shown in Figure 6C. As you expand 
a pattern, you can continually replace darts and kites with aces and bow 
ties. Actually an infinity of arbitrarily large pairs of shapes, made up of 
darts and kites, will serve for tiling any infinite pattern. 

A Penrose pattern is made by starting with darts and kites around 
one vertex and then expanding radially. Each time you add a piece to an 
edge, you must choose between a dart and a kite. Sometimes the choice 
is forced, sometimes it is not. Sometimes either piece fits, but later you 
may encounter a contradiction (a spot where no piece can be legally 
added) and be forced to go back and make the other choice. It is a good 
plan to go around a boundary, placing all the forced pieces first. They 
cannot lead to a contradiction. You can then experiment with unforced 



pieces. It is always possible to continue forever. The more you play with 
the pieces, the more you will become aware of "forcing rules" that 
increase efficiency. For example, a dart forces two kites in its concavity, 
creating the ubiquitous ace. 

There are many ways to prove that the number of Penrose tilings is 
uncountable, just as the number of points on a line is. These proofs rest 
on a surprising phenomenon discovered by Penrose. Conway calls it 
"inflation" and "deflation." Figure 7 shows the beginning of inflation. 
Imagine that every dart is cut in half and then all short edges of the 
original pieces are glued together. The result: a new tiling (shown in 
heavy black lines) by larger darts and kites. 

Inflation can be continued to infinity, with each new "generation" of 
pieces larger than the last. Note that the second-generation kite, al- 
though it is the same size and shape as a first-generation ace, is formed 
differently. For this reason the ace is also called a fool's kite. It should 
never be mistaken for a second-generation kite. Deflation is the same 
process carried the other way. On every Penrose tiling we can draw 
smaller and smaller generations of darts and kites. This pattern too goes 
to infinity, creating a structure that is a fractal (see Chapter 3). 

Figure 7 How a pattern is inflated 
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Conway's proof of the uncountability of Penrose patterns (Penrose 
had earlier proved it in a different way) can be outlined as follows. On 
the kite label one side of the axis of symmetry L, the other R (for left and 
right). Do the same on the dart, using 1 and r. Now pick a random point 
on the tiling. Record the letter that gives its location on the tile. Inflate 
the pattern one step, note the location of the same point in a second-gen- 
eration tile and again record the letter. Continuing through higher infla- 
tions, you generate an infinite sequence of symbols that is a unique 
labeling of the original pattern seen, so to speak, from the selected point. 

Pick another point on the original pattern. The procedure may give a 
sequence that starts differently, but it will reach a letter beyond which it 
agrees to infinity with the former sequence. If there is no such agree- 
ment beyond a certain point, the two sequences label distinct patterns. 
Not all possible sequences of the four symbols can be produced this way, 
but those that label different patterns can be shown to cori-espond in 
number with the number of points on a line. 

We have omitted the colored curves on our pictures of tilings be- 
cause they make it difficult to see the tiles. If you work with colored tiles, 
however, you will be struck by the beautiful designs created by these 
curves. Penrose and Conway independently proved that whenever a 
curve closes, it has a pentagonal symmetry, and the entire region within 
the curve has a fivefold symmetry. At the most a pattern car1 have two 
curves of each color that do not close. In most patterns all curves close. 

Although it is possible to construct Penrose patterns with a high 
degree of symmetry (an infinity of patterns have bilateral symmetry), 
most patterns, like the universe, are a mystifying mixture of order and 
unexpected deviations from order. As the patterns expand, they seem to 
be always striving to repeat themselves but never quite managing it. 
G. K. Chesterton once suggested that an extraterrestrial being, observing 
how many features of a human body are duplicated on the left and the 
right, would reasonably deduce that we have a heart on each side. The 
world, he said, "looks just a little more mathematical and regular than it 
is; its exactitude is obvious, but its inexactitude is hidden; i1.s wildness 
lies in wait." Everywhere there is a "silent swerving from accuracy by an 
inch that is the uncanny element in everything . . . a sort of secret 
treason in the universe." The passage is a nice description of Penrose's 
planar worlds. 

There is something even more surprising about Penrose universes. 
In a curious finite sense, given by the "local isomorphism theorem," all 
Penrose patterns are alike. Penrose was able to show that every finite 
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region in any pattern is contained somewhere inside every other pattern. 
Moreover, it appears infinitely many times in every pattern. 

To understand how crazy this situation is, imagine you are living on 
an infinite plane tessellated by one tiling of the uncountable infinity of 
Penrose tilings. You can examine your pattern, piece by piece, in ever 
expanding areas. No matter how much of it you explore you can never 
determine which tiling you are on. It is no help to travel far out and 
examine disconnected regions, because all the regions belong to one 
large finite region that is exactly duplicated infinitely many times on all 
patterns. Of course, this is trivially true of any periodic tessellation, but 
Penrose universes are not periodic. They differ from one another in 
infinitely many ways, and yet it is only at the unobtainable limit that one 
can be distinguished from another. 

Suppose you have explored a circular region of diameter d. Call it 
the "town" where you live. Suddenly you are transported to a randomly 
chosen parallel Penrose world. How far are you from a circular region 
that exactly matches the streets of your home town? Conway answers 
with a truly remarkable theorem. The distance from the perimeter of the 
home town to the perimeter of the duplicate town is never more than d 
times half of the cube of the golden ratio, or 2.1 1+ times d. (This is an 
upper bound, not an average.) If you walk in the right direction, you 
need not go more than that distance to find yourself inside an exact copy 
of your home town. The theorem also applies to the universe in which 
you live. Every large circular pattern (there is an infinity of different 
ones) can be reached by walking a distance in some direction that is 
certainly less than about twice the diameter of the pattern and more 
likely about the same distance as the diameter. 

The theorem is quite unexpected. Consider an analogous isomor- 
phism exhibited by a sequence of unpatterned digits such as pi. If you 
pick a finite sequence of 10 digits and then start from a random spot in 
pi, you are pretty sure to encounter the same sequence if you move far 
enough along pi, but the distance you must go has no known upper 
bound, and the expected distance is enormously longer than 10 digits. 
The longer the finite sequence is, the farther you can expect to walk to 
find it again. On a Penrose pattern you are always very close to a 
duplicate of home. 

There are just seven ways that darts and kites will fit around a vertex. 
Let us consider first, using Conway's nomenclature, the two ways with 
pentagonal symmetry. 

The sun (shown in white in Figure 8) does not force the placing of 
any other piece around it. If you add pieces so that pentagonal symmetry 
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Figure 8 The infinite s u n  pattern 

is always preserved, however, you will be forced to construct the beauti- 
ful pattern shown. It is uniquely determined to infinity. 

The star, shown in white in Figure 9, forces the 10 light gray kites 
around it. Enlarge this pattern, always preserving the fivefold symmetry, 
and you will create another flowery design that is infinite and unique. 
The star and sun patterns are the only Penrose universes with perfect 
pentagonal symmetry, and there is a lovely sense in which they are 
equivalent. Inflate or deflate either of the patterns and you get the other. 

The ace is a third way to tile around a vertex. It forces no more 
pieces. The deuce, the jack and the queen are shown in white in Figure 
10, surrounded by the tiles they immediately force. As Penrose discov- 
ered (it was later found independently by Clive Bach), some of the seven 
vertex figures force the placing of tiles that are not joined to the immedi- 
ately forced region. Plate 1 shows in deep color the central portion of the 
king's "empire." (The king is the dark gray area.) All the deep colored 
tiles are forced by the king. (Two aces, just outside the left and right 
borders, are also forced but are not shown.) 



Figure 9 The infinite star pattern 

Jack Queen Deuce 

Figure 10 The "empires" of deuce, jack and queen 
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This picture of the king's empire was drawn by a computer program 
written by Eric Regener of Concordia University in Montreal. His pro- 
gram deflates any Penrose pattern any number of steps. The heavy black 
lines show the domain immediately forced by the king. The thin black 
lines are a third-generation deflation in which the king and almost all of 
his empire are replicated. 

The most extraordinary of all Penrose universes, essential for under- 
standing the tiles, is the infinite cartwheel pattern, the center of which is 
shown in Figure 1 1. The regular decagon at the center, outlined in heavy 
black (each side is a pair of long and short edges), is what Conway calls a 
"cartwheel." Every point on any pattern is inside a cartwheel exactly like 

Figure 11 The cartwheel pattern surrounding Batman 



this one. By one-step inflation we see that every point will be inside a 
larger cartwheel. Similarly, every point is inside a cartwheel of every 
generation, although the wheels need not be concentric. 

Note the 10 light gray spokes that radiate to infinity. Conway calls 
them "worms." They are made of long and short bow ties, the number of 
long ones being in the golden ratio to the number of short ones. Every 
Penrose universe contains an infinite number of arbitrarily long worms. 
Inflate or deflate a worm and you get another worm along the same axis. 
Observe that two full worms extend across the central cartwheel in the 
infinite cartwheel pattern. (Inside it they are not gray.) The remaining 
spokes are half-infinite worms. Aside from spokes and the interior of the 
central cartwheel, the pattern has perfect tenfold symmetry. Between 
any two spokes we see an alternating display of increasingly large por- 
tions of the sun and star patterns. 

Any spoke of the infinite cartwheel pattern can be turned side to side 
(or, what amounts to the same thing, each of its bow ties can be rotated 
end for end), and the spoke will still fit all surrounding tiles except for 
those inside the central cartwheel. There are 10 spokes; thus there are 
21° = 1024 combinations of states. After eliminating rotations and re- 
flections, however, there are only 62 distinct combinations. Each combi- 
nation leaves inside the cartwheel a region that Conway has named a 
"decapod." 

Decapods are made up of 10 identical isosceles triangles with the 
shapes of enlarged half darts. The decapods with maximum symmetry 
are the buzzsaw and the starfish shown in Figure 12. Like a worm, each 
triangle can be turned. As before, ignoring rotations and reflections, we 
get 62 decapods. Imagine the convex vertexes on the perimeter of each 
decapod to be labeled T and the concave vertexes labeled H. To continue 
tiling, these H's and T's must be matched to the heads and tails of the 
tiles in the usual manner. 

When the spokes are arranged the way they are in the infinite cart- 
wheel pattern shown, a decapod called Batman is formed at the center. 
Batman (shown in dark gray) is the only decapod that can legally be 
tiled. (No finite region can have more than one legal tiling.) Batman 
does not, however, force the infinite cartwheel pattern. It merely allows 
it. Indeed, no finite portion of a legal tiling can force an entire pattern, 
because the finite portion is contained in every tiling. 

Note that the infinite cartwheel pattern is bilaterally symmetrical, its 
axis of symmetry going vertically through Batman. Inflate the pattern 
and it remains unchanged except for mirror reflection in a line perpen- 
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Buzzsaw Starfish Asterix 

Figure 12 Three decapods 

dicular to the symmetry axis. The five darts in Batman and its two central 
kites are the only tiles in any Penrose universe that are not inside a 
region of fivefold symmetry. All other pieces in this pattern or any other 
one are in infinitely many regions of fivefold symmetry. 

The other 6 1 decapods are produced inside the central cartwheel by 
the other 61 combinations of worm turns in the spokes. All 61 are 
"holes" in the following sense. A hole is any finite empty region, sur- 
rounded by an infinite tiling, that cannot be legally tiled. 'You might 
suppose each decapod is the center of infinitely many tilings, but here 
Penrose's universes play another joke on us. Surprisingly, 60 decapods 
force a unique tiling that differs from the one shown only in the compo- 
sition of the spokes. Only Batman and one other decapod, called Asterix* 
after a French cartoon character, do not. Like Batman, Asterix allows an 
infinite cartwheel pattern, but it also allows patterns of other kinds. 

Now for a startling conjecture. Conway believes, although he has not 
completed the proof, that every possible hole, of whatever size or shape, 
is equivalent to a decapod hole in the following sense. By rearranging 
tiles around the hole, taking away or adding a finite number (of pieces if 
necessary, you can transform every hole into a decapod. If this is true, 
any finite number of holes in a pattern can also be reduced to one 
decapod. We have only to remove enough tiles to join the holes into one 
big hole, then reduce the big hole until an untileable decapod results. 

*Asterix the Gaul is featured in a popular series of French picture books for children. 
The stories are fantasies taking place at the time of Julius Caesar. Asterix is also an 
intended pun on "asterisk." 
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Think of a decapod as being a solid tile. Except for Batman and 
Asterix, each of the 62 decapods is like an imperfection that solidifies a 
crystal. It forces a unique infinite cartwheel pattern, spokes and all, that 
goes on forever. If Conway's conjecture holds, any "foreign piece" 
(Penrose's term) that forces a unique tiling, no matter how large the 
piece is, has an outline that transforms into one of 60 decapod holes. 

Kites and darts can be changed to other shapes by the same tech- 
nique described earlier for changing isosceles triangles into spiral-tiling 
polygons. It is the same technique that Escher employed for transform- 
ing polygonal tiles into animal shapes. Figure 13 shows how Penrose 
changed his darts and kites into chickens that tile only nonperiodically. 
Note that although the chickens are asymmetrical, it is never necessary 
to turn any of them over to tile the plane. Alas, Escher died before he 
could know of Penrose's tiles. How he would have reveled in their 
possibilities! 

By dissecting darts and kites into smaller pieces and putting them 
together in other ways you can make other pairs of tiles with properties 
similar to those of darts and kites. Penrose found an unusually simple 
pair: the two rhombuses in the sample pattern of Figure 14. All edges are 
the same length. The larger piece has angles of 72 and 108 degrees and 

Figure 13 Penrose's nonperiodic chickens 
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Figure 14 A nonperiodic tiling with Roger Penrose's rkombtlses 

the smaller one has angles of 36 and 144 degrees. As before, both the 
areas and the number of pieces needed for each type are in the golden 
ratio. Tiling patterns inflate and deflate and tile the plane in an uncount- 
able infinity of nonperiodic ways. The nonperiodicity can be forced by 
bumps and dents or by a coloring such as the one suggested by Penrose 
and shown in the illustration by the light and dark gray areas. 

We see how closely the two sets of tiles are related to each other and 
to the golden ratio by examining the pentagram in Figure 15. This was 
the mystic symbol of the ancient Greek Pythagorean brothel-hood and 
the dipgram with which Goethe's Faust trapped Mephistopheles. The 
construction can continue forever, outward and inward, and every line 
segment is in the golden ratio to the next smaller one. Note how all four 
Penrose tiles are embedded in the diagram. The kite is ABCD, and the 
dart is AECB. The rhombuses, although they are not in the proper rela- 
tive sizes, are AECD and ABCF. As Conway likes to put it, the two sets of 
tiles are based on the same underlying "golden stuff." Any theorem 
about kites and darts can be translated into a theorem about the Penrose 
rhombuses or any other pair of Penrose tiles and vice versa. Conway 
prefers to work with darts and kites, but other mathematicians prefer 
working with the simpler rhombuses. Robert Ammann has found a 



Figure 15 The Pythagorean pentagram 

bewildering variety of other sets of nonperiodic tiles. One set, consisting 
of two convex pentagons and a convex hexagon, forces nonperiodicity 
without any edge markings. He found several pairs, each a hexagon with 
five interior angles of 90 degrees and one of 270 degrees. You'll find 
these sets depicted and their remarkable properties discussed in the 
book by Branko Griinbaum and G. C. Shephard listed in the next chap- 
ter's bibliography. 

Are there pairs of tiles not related to the golden ratio that force 
nonperiodicity? Is there a pair of similar tiles that force nonperiodicity? 
Is there a pair of convex tiles that will force nonperiodicity without edge 
markings? 

Of course, the major unsolved problem is whether there is a single 
shape that will tile the plane only nonperiodically. Most experts think 
not, but no one is anywhere near proving it. It has not even been shown 
that if such a tile exists, it must be nonconvex. 
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In the decade since my column on Penrose tiling ran in 
Scientific American (January 1977), Roger Penrose, John Conway, Rob- 
ert Ammann and others have made enormous strides in exploring non- 
periodic tiling. (I will continue here to use the term "nonperiodic," 
although Branko Griinbaum and G. C. Shephard in their monumental 
work Tilings and Patterns prefer to call a set of tiles "aperiodic" if it tiles 
only nonperiodically.) The discovery of what are now called Ammann 
bars or lines and of 3-space analogues of Penrose tiling has led to an 
amazing development in crystallography, but first let me summarize in 
this previously unpublished chapter some of the developments that pre- 
ceded this breakthrough. 

Robert Ammann, a brilliant young mathematician working at low- 
level computer jobs in Massachusetts, independently discovered 
Penrose's rhomb tiles in 1976, about eight months before my column on 
Penrose tiling appeared. In correspondence I informed him of the darts 
and kites, as well as Penrose's earlier discovery of the rhombs. Ammann 
soon realized that both pairs of tiles formed patterns that were deter- 
mined by five families of parallel lines that cross the plane in five differ- 
ent directions, intersecting one another at 36015 = 72-degree angles. 
One family of such lines, now called Ammann bars, is shown in 
Figure 16. 
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Figure 16 A family of Ammann bars displaying (left to right) a SLLSLLS 
sequence 

Observe that the lines cross the concave corners of darts that point 
in the same or opposite direction. This is not strictly accurate, but for 
our purposes lines ruled in this easy way are adequate. For a precise 
positioning of the lines, see the Griinbaum/Shephard book. When accu- 
rately placed, each line is a trifle outside a dart's concave corner. Inside 
each regular decagon (ten-sided polygon) on the pattern, the Ammann 
bars form a perfect pentagram (five-pointed star). 

Note that the spacings between bars are of two lengths which we will 
call L (for long) and S (for short). When the lines are properly drawn, 
these two lengths are in golden ratio. Moreover, on the infinite plane the 
number of L's in a family of bars and the number of S's in that same 
family are in golden ratio. Moving in either direction perpendicular to a 
family of bars, we can record the sequence of spacings as a sequence of 
L's and S's. This sequence is nonperiodic, and constitutes a remarkable 
1-dimensional analogue of Penrose tiling. The local isomorphism 
theorem applies. If you select any finite portion of the sequence, you can 
always find it duplicated not far away. Start anywhere and write down 
the letters to any finite length, say a billion. If you start at any other spot 
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in the sequence, you are certain to reach this identical billion-letter 
sequence. Only when the sequence is taken as infinite is it unique. 

Conway discovered that this sequence can be obtained from the 
golden ratio in the following way. Write down in ascending order the 
multiples of the golden ratio (1 + &)/2) and round them down to the 
nearest integer. The result is the sequence that begins 1, 3,4, 6, 8, 9, 11, 
12, 14, 16, 17, 19, 21, 22,24, 25, 2 7 , 2 9 , 3 0 , 3 2 , 3 3 , 3 5 , 3 7 , 3 8 , 4 0 , 4 2 , 4 3 ,  
45, 46, 48, 50. . . . It is sequence 917 in N. J. A. Sloane's Handbook of 
Integer Sequences. If you round down multiples of the square of the 
golden ratio, you get the sequence 2,5,7, 10, 13, 15, 18,20, 23. . . . The 
two sequences are called "complementary." Together they display every 
positive integer once and only once. Successive multiples of any real 
number a ,  rounded down to the nearest integer, form a sequence called 
the spectrum of a. If a is irrational, the sequence is called a Beatty 
sequence after Samuel Beatty, a Canadian mathematician who called 
attention to such sequences in 1926. As we shall see in Chapter 8, the 
complementary Beatty sequences based on the golden ratio provide the 
winning strategy for a famous variant of Nim known as Wythoff's game. 
References on Beatty sequences are given in that chapter's bibliography. 

Adjacent numbers in the golden Beatty sequence differ by either 1 or 
2. Put down this first row of differences, then change each 1 to 0 and 
each 2 to 1. You get an endless binary sequence that starts 
101 10 10 1 101 10 10. . . . This is a portion of the sequence of S's and L's in 
any infinite family of Ammann bars. Conway uses the term "musical 
sequence" for any finite segment of the golden ratio sequence. Follow- 
ing Penrose, I shall call them Fibonacci sequences. 

Such sequences have many curious properties. For example, put a 
decimal point in front of the Fibonacci sequence given above in binary 
notation. The result is an irrational binary fraction that is generated by 
the following continued fraction: 



The exponents of this continued fraction are none other than the 
Fibonacci numbers. Conway has many unpublished results on the way 
Penrose tilings are related to Fibonacci numbers, which are in turn 
related to the growth patterns of plants. 

Penrose tilings are, as we have seen, self-similar in the sense that 
inflating or deflating them produces another tiling. Fibonacci sequences 
have the same self-similar property. There are many techniques for 
inflating and deflating them to produce another such sequence, but the 
simplest is as follows. To deflate, replace each S by an L, each LL by S, 
and drop all single L's. For example, the sequence LSLLSLSLLSLLSLS 
deflates by these rules to LSLLSLSLL. To inflate, replace each L by S, 
each S by LL, then add an L between each pair of S's. 

A Fibonacci sequence cannot contain SS or LLL. This provides a 
simple way to tell if a sequence of S's and L's is Fibonacci. Apply the 
deflation rules until you reach either a sequence that contains an SS or 
an LLL (in which case the sequence is not Fibonacci) or a single letter 
that proves it is. If you inflate or deflate a Penrose tiling, the sequence in 
each family of Ammann bars also inflates or deflates. The sequence of 
long and short bow ties in any worm, such as the worms in the ten 
spokes of the cartwheel pattern, is also a Fibonacci sequence. 

Two families of Ammann bars tessellate the plane with nonperiodic 
parallelograms that form a grid into which the tiles fit. As Griinbaum and 
Shephard put it, instead of thinking of the tiles as determining Ammann 
bars, "it is the system of bars which are fundamental and the only 
function of the tiles is to give a practical realization to them." The bars 
are something vaguely like the quantum fields that determine the posi- 
tions and paths of particles. Ammann was the first to perceive, early in 
1977, that his grid of bars leads into "forcing theorems" -theorems that 
tell how a small set of tiles will force the positions of infinite sets of other 
tiles. 

As Ammann expressed it in a letter to me: "Whenever a set of tiles 
forces two parallel lines to occupy certain positions, it forces an infinite 
number of nonadjacent parallel lines also to occupy certain positions. 
Whenever three lines cross at the proper angles, a tile is forced." This 
property of a finite set of tiles forcing the positions of tiles at arbitrarily 
long distances belongs also to the Penrose rhombs and to Robinson 
squares, even though they have no connection with the golden ratio. 

Taking off from Ammann's discoveries, Conway went on to develop 
many remarkable forcing theorems. I will say here only that two Penrose 
tiles (each can be of either type), suitably placed and arbitrarily far apart, 
will determine two infinite families (not complete families) of bars. 
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Intersections of the two families in turn determine the positions of an 
infinite set of tiles. The king, queen, jack, deuce and star, for example, 
force an infinite set of tiles in their empires. (The ace and sun do not 
force any tiles.) The king's empire is unusually dense. You might expect 
the density of such forced tiles to thin out as you get farther from the 
center, but this is not the case. The 'density remains constant for the 
entire plane. 

Ammann's other great discovery, also made in 1976, was a set of two 
rhombohedra (parallelepipeds with six congruent rhomb faces) which, 
with suitable face-matching rules, force a nonperiodic tiling of space. 
Nets for the two solids are shown in Figure 17. If you cut these two nets 
out of cardboard, fold along the lines and tape the edges, you will obtain 
the two solids shown at the bottom of the illustration. One can be 
thought of as a cube that has been squashed along a space diagonal and 

Figure 17 Nets for the obtuse and acute golden rhombohedra 



24 Chapter 2 

the other as a cube that has been stretched along a space diagonal. All 
twelve faces are congruent, with their diagonals in golden ratio. The 
geometer H. S. M. Coxeter, in a note added on page 161 to the thirteenth 
edition of W. W. Rouse Ball's classic Mathematical Recreations and 
Essays (Dover, 1987), which he edited, calls a rhombohedron of this type 
a "golden rhombohedron." There are just two kinds, both of which had 
been studied by Kepler. The acute golden rhombohedron has two oppo- 
site corners where three equal acute angles meet. The obtuse golden 
rhombohedron has two opposite corners where equal obtuse angles 
meet. Other corners on both solids are mixtures of acute and obtuse 
angles. 

Ammann's two rhombohedra are the two golden types. The faces of 
the acute solid meet along edges at angles of 72 and 108 degrees. Those 
on the obtuse solid meet at 36 and 144 degrees. (The four dihedral angles 
are multiples of 360110 = 36 degrees.) The face angles are close to 64 
and 1 16 degrees. Periodic tiling is ruled out by suitably placed holes and 
projections. Note the spots on the unfolded faces in the illustration. 
Imagine each solid with a duplicate that has its spots in a pattern that is a 
mirror image of the other. This forms a set of four solids that force 
nonperiodicity if you put them together so every spot touches another 
spot. It is not known if there is a way to avoid this mirror-image marking 
so that just two solids, suitably marked, will force nonperiodicity. If a 
plane is passed through the space tiling at a suitable angle, the plane 
displays a tiling very close to a tiling by Penrose rhombs. 

I sent Ammann's results to Penrose. In a letter dated May 4, 1976, 
Penrose asked me to convey his congratulations to Ammann on two 
counts: for his independent discovery of the rhomb tiles and for the 
space tiling by the two golden rhombohedra. He continued: 

It is just possible that these things may have some significance in 
biology. You will recall that some viruses grow in the shapes of regular 
dodecahedra and icosahedra. It has always seemed puzzling how they do 
this. But with Ammann's non-periodic solids as basic units, one would 
arrive at quasi-periodic 'crystals' involving such seemingly impossible 
(crystallographically) cleavage directions along dodecahedra1 or 
icosahedral planes. Is it possible that the viruses might grow in some 
such way involving non-periodic basic units-or is the idea too fanciful? 

A year after Ammann's discovery of his nonperiodic space tiling, it 
was rediscovered in Japan by Koji Miyazaki, an architect at Kobe Univer- 
sity. He also discovered another way that the two golden rhombohedra 
can tile space nonperiodically, although the tiling is not forced. Five 
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acute and five obtuse golden rhombohedra will fit together to form a 
rhombic triacontrahedron. Two such solids, joined by a common obtuse 
vertex, can be surrounded with 60 more golden rhombohedra (30 of 
each type) to make a larger rhombic triacontrahedron. This enlargement 
can be continued to infinity, tiling space in a honeycomb that has a 
center of icosahedral symmetry. 

Penrose's conjectures about crystals, even his terminology, proved 
to be amazingly prophetic. In the early 1980's a number of scientists and 
mathematicians began to speculate cautiously about the possibility that 
the atomic structure of crystals might be based on a nonperiodic lattice. 
Then in 1984 Dany Schechtman and his colleagues at the National 
Bureau of Standards made a dramatic announcement. They had found a 
nonperiodic structure in the electron micrographs of a rapidly cooled 
aluminum-manganese alloy that some chemists immediately dubbed 
Schechtmanite. The micrographs displayed a clear fivefold symmetry 
which strongly suggested a nonperiodic space tiling analogous to 
Penrose tiling. 

Nothing like this had been seen before. It was, as science writer Ivars 
Peterson put it, as if someone had observed a five-sided snowflake. It had 
long been a dogma in crystallography that crystals could exhibit rota- 
tional symmetry of only 2, 3, 4 and 6 rotations, but never 5, 7 or 8. 
Another dogma was that solid matter took only two forms: either with 
atoms in a periodic arrangement or with disordered atoms in such 
amorphous material as glass. 

The ordered lattices of all crystals then known derived from three 
Platonic solids: the tetrahedron, cube and octahedron. The dodecahe- 
dron and icosahedron were ruled out because their fivefold symmetry 
made periodic tiling impossible. Yet here was a material that seemed to 
exhibit icosahedral symmetry. Like Penrose tiling, when the material 
was rotated by 72 degrees, or 115 of a circle, it remained essentially the 
same in an overall statistical way, but without long-range periodicity. It 
seemed to be a form of matter halfway between glass and ordinary 
crystals, suggesting that instead of a sharp demarcation between the two 
forms, there could be a continuum of in-between structures. 

Among physicists, chemists and crystallographers the effect of this 
discovery was explosive. Similar nonperiodic structures were soon 
being induced in other alloys, and dozens of papers began to appear. It 
became clear that solid matter could exhibit nonperiodic lattices with 
any kind of rotational symmetry. Wide varieties of solid tiles in sets of 
two or more were proposed as models, some forcing nonperiodicity, 
some merely allowing it. A crystal structure was produced made of 



layers of sheets with two-dimensional Penrose rhomb tiling. N. G. de 
Bruijn in the Netherlands developed an algebraic theory of nonperiodic 
tiling based on what he calls "pentagrids," similar to Ammann bars. In a 
1987 paper, he reported a surprising connection between nonperiodic tiling 
theory and a shuffling theorem known to card magicians as the Gilbreath 
principle. (On this principle see Chapter 9 of my New Mathematical Diver- 
sions from Scientific American.) 

There is now enormous ferment in the ongoing empirical and theo- 
retical investigations of "quasicrystals," as the new halfway crystals are 
called. There is also opposition to the view that their lattices are genu- 
inely nonperiodic. The leading opponent is Linus Pauling, who argues 
that the micrographs should be interpreted as a spurious form of fivefold 
symmetry known to crystallographers as multiple twinning. "Crystallo- 
graphers can now cease to worry that the validity of one of the accepted 
bases of their science has been questioned," Pauling concluded in a 
1985 report in Nature. Another possibility is that quasicrystals are simply 
extremely large unit cells of a periodic pattern that will be found when 
larger samples are made. And there are other possibilities. Proponents of 
quasicrystals maintain that all these alternative interpretations of the 
micrographs have been eliminated and that true nonperiodicity is the 
simplest explanation. It could be that in a few years empirical studies 
will disconfirm this, and quasicrystals may go the ill-fated way of poly- 
water; but if the nonperiodic interpretation holds, it will be a sensational 
turning point in crystallography. 

Assuming quasicrystals are real, the next few years should see in- 
creasingly efficient techniques for producing them. Many questions cry 
out for answers. What physical forces are involved in the formation of 
these strange crystals? Penrose has suggested that perhaps nonlocal 
quantum field effects play a role because without an overall plan it is 
hard to see how such a crystal could grow in such a way as to preserve its 
long-range nonperiodic pattern. (In the passage quoted earlier from his 
1976 letter, Penrose's speculations about viruses reflected his concern 
over how a quasicrystal could grow without guidance by nonlocal 
forces.) What are the elastic and electronic properties of quasicrystals? 
Will geologists ever find quasicrystals produced by nature? 

If quasicrystals are what their defenders think they are, they provide 
a striking example of how work done in recreational mathematics, 
purely for fun and aesthetic satisfaction, can turn out to have significant 
practical applications to the physical world and to technology. 

In 1980 I heard Conway lecture on Penrose tiling at Bell Laborato- 
ries. Discussing "hole theory," he said he liked to imagine a vast temple 
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with a floor tesselated by Penrose tiles and a circular column exactly in 
the center. The tiles seem to go under the column. Actually, the column 
covers a hole that can't be tesselated. Incidentally, on such patterns the 
Ammann bars get broken out of alignment as they pass through the hole. 

A Penrose tiling can, of course, always be colored with four colors so 
that no two tiles of the same color share a common edge. Can it always 
be colored with three? It can be shown, Conway said, from the local 
isomorphism theorem, that if any Penrose tiling is three-colorable, all 
are, but so far no one has proved that any infinite Penrose tiling is 
three-colorable. 

Conway gave the following simple reductio a d  absurdum proof 
(which he credited to Peter Barlow, a British mathematician who died in 
1862, best known today for his books of tables) that no tiling pattern can 
have more than one center of fivefold symmetry. Assume it has more 
than one. Select the two, A and B, that are closest together. (See Figure 
18.) Rotate the pattern 36015 = 72 degrees clockwise around B, carrying 
A to A' as shown. Return to the original position, and rotate the pattern 
72 degrees counterclockwise around A, taking B to B'. Result: Both 
rotations (if our assumption is true) would leave the pattern unchanged, 
but now it has two centers of fivefold symmetry, A' and B', that are closer 
together than A and B. This contradicts our second assumption that A 
and B are the closest centers. 

There are single tiles (and sets of tiles) that tile the plane periodically 
in only one way: the regular hexagon and the cross pentomino, for 
example. All triangles and all parallelograms tile in an uncountable 

Figure 18 Barlow's proof that no 
pattern can have two 
centers o f  fivefold Figure 19 The Conway tile that 
symmetry tiles in zero ways 



infinity of ways. Grünbaum and Shephard conjecture that no tile exists
that tiles periodically in a countable infinity of ways. They also conjec-
ture that given any positive integer r, there are single tiles that tile the
plane in just r ways. Such tiles have been found for r =1 through 10. In
his lecture Conway exhibited what he calls the “Conway tile” (Figure
19) for r = 0. He concluded by saying it was the first lecture he had ever
given on Penrose tiling in which he didn’t inadvertently say “karts and
dites.”
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