
CSCI 4560/6560 Computational Geometry
https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/S22/

Lecture 1:
Introduction &
Convex Hulls

Outline for Today
● 2D Planar Convex Hulls

● Definitions
● A few different algorithms to construct
● Discussion of accuracy & robustness
● Analysis of running time

● Applications of Computational Geometry
● Introductions
● Website & Syllabus
● Homework 1: Convex Hulls

http://img.sparknotes.com/figures/B/b333d91dce2882b2db48b8ad670cd15a/convexconcave.gif

Convex: Shape has no inward corners or curving faces.

Concave: Has inward corner(s) or inward curving face(s).

Convex vs. Non-Convex

A subset S of the plane is called
convex if and only if for any pair of
points p,q ∈ S the line segment pq
is completely contained in S.

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 1

http://en.wikipedia.org/wiki/File:ConvexHull.svg

Convex Hull: The smallest
convex shape that contains all
of the input points / elements.

● In 2D, put a nail in the board at each
point location. Stretch a rubber band
over / around the outside of these nails.

● The final position of the rubber band is
the convex hull.

● The nails / points touching the rubber
band are the extreme points.

Convex Hull: The smallest
convex shape that contains all
of the input points / elements.

https://themontessoriclub.com/montessori-
peg-board-the-montessori-club/

● In 2D, put a nail in the board at each
point location. Stretch a rubber band
over / around the outside of these nails.

● The final position of the rubber band is
the convex hull.

● The nails / points touching the rubber
band are the extreme points.

Naive Algorithm
● Step 1: Find all directed

line segments pq that are
on the convex hull.

● A line segment is on the convex hull
if when looking down the line
segment from p to q, there are no
points to the left of that line.

● Step 2: Organize those line
segments in clockwise order.

● Step 3: Output the starting point
of each line segments

● This will be all of the extreme points
of the convex hull.

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 1

Naive Algorithm
● Step 1: Find all directed

line segments pq that are
on the convex hull.

● A line segment is on the convex hull
if when looking down the line
segment from p to q, there are no
points to the left of that line.

● Step 2: Organize those line
segments in clockwise order.

● Step 3: Output the starting point
of each line segments

● This will be all of the extreme points
of the convex hull.

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 1

Naive Algorithm
● Step 1: Find all directed

line segments pq that are
on the convex hull.

● A line segment is on the convex hull
if when looking down the line
segment from p to q, there are no
points to the left of that line.

● Step 2: Organize those line
segments in clockwise order.

● Step 3: Output the starting point
of each line segments

● This will be all of the extreme points
of the convex hull.

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 1

Cost of the Naive Algorithm?

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 1

● Let n be # of input points, and h be the
number of extreme points on convex hull.

● Step 1: Find edges

● Step 2: Order edges

● Step 3: Output edges

Cost of the Naive Algorithm?
● Let n be # of input points, and h be the

number of extreme points on convex hull.
● Step 1: Find edges

● For n points
● n*(n-1) directed segments to consider
● For each, check all other n points to

see if any lie to the left.
● O(n3)

● Step 2: Order edges
● For each edge pq, finding the next

edge (that starts with q) takes n time.
● O(h2)

● Step 3: Output edges
● O(h) Computational Geometry Algorithms and Applications,

de Berg, Cheong, van Kreveld and Overmars, Chapter 1

Besides the expensive running time,
what are the problems with Naive Algorithm?

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 1

Besides the expensive running time,
what are the problems with Naive Algorithm?
● Is it well defined?

Do we agree on what is the
right answer in all cases?

● Might we have problems with
numerical precision?

Floating point rounding errors?

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 1

Floating point rounding errors
● May cause a point to be missed that should be on the boundary
● May cause a point to be included that should not be on the boundary

Or worse…
● Judgements about being left vs. right side may be inconsistent
● This can cause duplicates or gaps in the boundary

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 1

Let’s try again…
● We will construct the upper hull

(and then similarly, the lower hull)

● Maintain a list of the points
p1, p2, .. pi that form the
current upper hull

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 1

p2

p3 p4

p5

Let’s try again… Construct the Upper Hull
● Step 1: Sort the input points by x

coordinate. The leftmost point
must be on the upper hull.

● Step 2: Walk through the points
from left to right. Add pi to the
upper hull.

● Step 3: For each added point…
if the angle pi-2 pi-1 pi
is a left bend, remove pi-1
(& check previous point too) Computational Geometry Algorithms and Applications,

de Berg, Cheong, van Kreveld and Overmars, Chapter 1

pi-1

Analysis of Constructing the Upper Hull?
● Let n be # of input points
● Step 1: Sort

● Step 2: Add each point

● Step 3: Remove points

● Overall:

 Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 1

Analysis of Constructing the Upper Hull?
● Let n be # of input points
● Step 1: Sort

● O(n log n)
● Step 2: Add each point

● O(n) total
● Step 3: Remove points

● O(n) max total cost

● Overall:
● O(n log n) Computational Geometry Algorithms and Applications,

de Berg, Cheong, van Kreveld and Overmars, Chapter 1

Can we do better? “Gift Wrapping” Algorithm
● Step 1: Find p0

The point with the smallest x
coordinate.

● Step 2: “Walk around” the point
set in the clockwise direction.
● At each point e.g., p2, find

the next point, p3 on the hull.
● Check all other points…
● Find the smallest outer angle

between lines p1 p2 & p2 p3

Gift Wrapping Algorithm Analysis
● Let n be # of input points, and

h be the number of extreme points on convex hull.

● Step 1: Find p0

● Step 2: Find each next point on the hull

Gift Wrapping Algorithm Analysis
● Let n be # of input points, and

h be the number of extreme points on convex hull.

● Step 1: Find p0
● O(n)

● Step 2: Find each next point on the hull
● h times
● find the next point = O(n)
● Overall O(n*h)

● Is this better?

Gift Wrapping Algorithm Analysis
● Let n be # of input points, and

h be the number of extreme points on convex hull.

● Step 1: Find p0
● O(n)

● Step 2: Find each next point on the hull
● h times
● find the next point = O(n)
● Overall O(n*h)

● Is this better?
● Worst case? h = n

most/all input points are on the convex hull
O(n2)

● Best case? h < log n
and then it is better than previous algorithm

Recursive Divide & Conquer Algorithm (like Merge Sort)

● Split Step:
● Sort points by the x coordinate
● Split into 2 equal-sized groups
● Then recurse…

● Merge Step:
● Find rightmost point in left hull,

and leftmost point in right hull.
● Walk down to find lower

tangent
● & walk up for upper tangent
● Discard points in between

upper & lower tangents

Analysis of Recursive Divide & Conquer Algorithm

● Sort points:

● Split Step:

● Merge Step:

Analysis of Recursive Divide & Conquer Algorithm

● Sort points: only once
● O(n log n)

● Split Step:
● n splits

● Merge Step:
● n merges
● each of the n points will

be removed at most once

● Overall:
● O(n log n)

Beyond 2D Planar Convex Hulls
● 3D Convex Hulls… & higher dimensions!
● Image Based Visual Hulls (not the same!)

http://diskhkme.blogspot.com/2015/10/con
vex-hull-algorithm-in-unity-2-3d.htmlImage-Based Visual Hulls,

Matusik et al, SIGGRAPH 2000

Outline for Today
● 2D Planar Convex Hulls

● Definitions
● A few different algorithms to construct
● Discussion of accuracy & robustness
● Analysis of running time

● Applications of Computational Geometry
● Introductions
● Website & Syllabus
● Homework 1: Convex Hulls

Applications for Computational Geometry
● Computer Graphics / Games / Virtual Reality / Computer Vision

primitive intersections, hidden surface removal, ray tracing, collision detection
● Robotics

motion planning, kinematics, robot arm placement
● Geographics Information Systems (GIS)

modeling terrain, river networks, average rainfall, population, map overlays
● CAD/CAM (manufacturing)

intersection & union of objects, physical simulations, feasibility of assembly
● Other: Molecular Modeling, Optical Character Recognition (OCR), etc.
● General purpose database / data record comparisons

can be very high dimension! (more than 3D!)

Introductions
● Let’s go around the “room” and introduce ourselves

Share anything you are comfortable sharing

● Name
● Current degree program (department, major, dual major)
● Number of terms you’ve been at RPI
● Possible connections to Computational Geometry…

● Prior course work
● Current research
● Extra-curricular interests

● What you hope to learn this semester

Outline for Today
● 2D Planar Convex Hulls

● Definitions
● A few different algorithms to construct
● Discussion of accuracy & robustness
● Analysis of running time

● Applications of Computational Geometry
● Introductions
● Website & Syllabus
● Homework 1: Convex Hulls

