
CSCI 4560/6560 Computational Geometry
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Lecture 1: 
Introduction & 
Convex Hulls



Outline for Today
● 2D Planar Convex Hulls

● Definitions
● A few different algorithms to construct
● Discussion of accuracy & robustness
● Analysis of running time

● Applications of Computational Geometry
● Introductions
● Website & Syllabus
● Homework 1: Convex Hulls



http://img.sparknotes.com/figures/B/b333d91dce2882b2db48b8ad670cd15a/convexconcave.gif

Convex:  Shape has no inward corners or curving faces. 

Concave:  Has inward corner(s) or inward curving face(s).



Convex vs. Non-Convex

A subset S of the plane is called 
convex if and only if for any pair of 
points p,q ∈ S the line segment pq 
is completely contained in S.

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 1



http://en.wikipedia.org/wiki/File:ConvexHull.svg

Convex Hull:  The smallest 
convex shape that contains all 
of the input points / elements.

● In 2D, put a nail in the board at each 
point location.  Stretch a rubber band 
over / around the outside of these nails.  

● The final position of the rubber band is 
the convex hull.  

● The nails / points touching the rubber 
band are the extreme points.



Convex Hull:  The smallest 
convex shape that contains all 
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https://themontessoriclub.com/montessori-
peg-board-the-montessori-club/

● In 2D, put a nail in the board at each 
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● The final position of the rubber band is 
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Naive Algorithm
● Step 1: Find all directed 

line segments pq that are 
on the convex hull.

● A line segment is on the convex hull 
if when looking down the line 
segment from p to q, there are no 
points to the left of that line.

● Step 2: Organize those line 
segments in clockwise order.

● Step 3: Output the starting point 
of each line segments

● This will be all of the extreme points 
of the convex hull.

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 1
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Cost of the Naive Algorithm?

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 1

● Let n be # of input points, and h be the 
number of extreme points on convex hull.

● Step 1: Find edges

● Step 2: Order edges

● Step 3: Output edges



Cost of the Naive Algorithm?
● Let n be # of input points, and h be the 

number of extreme points on convex hull.
● Step 1: Find edges

● For n points
● n*(n-1) directed segments to consider 
● For each, check all other n points to 

see if any lie to the left.
● O(n3)

● Step 2: Order edges
● For each edge pq, finding the next 

edge (that starts with q) takes n time.
● O(h2)

● Step 3: Output edges
● O(h) Computational Geometry Algorithms and Applications, 

de Berg, Cheong, van Kreveld and Overmars, Chapter 1



Besides the expensive running time, 
what are the problems with Naive Algorithm?

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 1



Besides the expensive running time, 
what are the problems with Naive Algorithm?
● Is it well defined?

Do we agree on what is the 
right answer in all cases?

● Might we have problems with 
numerical precision?  

Floating point rounding errors?

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 1



Floating point rounding errors
● May cause a point to be missed that should be on the boundary 
● May cause a point to be included that should not be on the boundary



Or worse…  
● Judgements about being left vs. right side may be inconsistent 
● This can cause duplicates or gaps in the boundary

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 1



Let’s try again…
● We will construct the upper hull 

(and then similarly, the lower hull)

● Maintain a list of the points 
p1, p2, .. pi that form the 
current upper hull

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 1
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Let’s try again…  Construct the Upper Hull
● Step 1: Sort the input points by x 

coordinate.  The leftmost point 
must be on the upper hull.

● Step 2: Walk through the points 
from left to right.  Add pi to the 
upper hull.

● Step 3: For each added point… 
if the angle pi-2 pi-1 pi 
is a left bend, remove pi-1
(& check previous point too) Computational Geometry Algorithms and Applications, 

de Berg, Cheong, van Kreveld and Overmars, Chapter 1

pi-1



Analysis of Constructing the Upper Hull?
● Let n be # of input points
● Step 1: Sort

● Step 2: Add each point

● Step 3: Remove points 

● Overall:

 Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 1



Analysis of Constructing the Upper Hull?
● Let n be # of input points
● Step 1: Sort

● O(n log n)
● Step 2: Add each point

● O(n) total
● Step 3: Remove points

● O(n) max total cost

● Overall:
● O(n log n) Computational Geometry Algorithms and Applications, 

de Berg, Cheong, van Kreveld and Overmars, Chapter 1



Can we do better?  “Gift Wrapping” Algorithm 
● Step 1: Find p0

The point with the smallest x 
coordinate.

● Step 2: “Walk around” the point 
set in the clockwise direction.
● At each point e.g., p2, find 

the next point, p3 on the hull.  
● Check all other points…
● Find the smallest outer angle 

between lines p1 p2 & p2 p3



Gift Wrapping Algorithm Analysis
● Let n be # of input points, and 

h be the number of extreme points on convex hull.

● Step 1: Find p0

● Step 2: Find each next point on the hull



Gift Wrapping Algorithm Analysis
● Let n be # of input points, and 

h be the number of extreme points on convex hull.

● Step 1: Find p0
● O(n)

● Step 2: Find each next point on the hull
● h times
● find the next point = O(n)
● Overall O(n*h)

● Is this better?



Gift Wrapping Algorithm Analysis
● Let n be # of input points, and 

h be the number of extreme points on convex hull.

● Step 1: Find p0
● O(n)

● Step 2: Find each next point on the hull
● h times
● find the next point = O(n)
● Overall O(n*h)

● Is this better?
● Worst case?  h = n

most/all input points are on the convex hull
O(n2)

● Best case?  h < log n
and then it is better than previous algorithm



Recursive Divide & Conquer Algorithm (like Merge Sort)

● Split Step: 
● Sort points by the x coordinate
● Split into 2 equal-sized groups
● Then recurse…

● Merge Step:
● Find rightmost point in left hull, 

and leftmost point in right hull.  
● Walk down to find lower 

tangent
● & walk up for upper tangent
● Discard points in between 

upper & lower tangents



Analysis of Recursive Divide & Conquer Algorithm

● Sort points:  

● Split Step: 

● Merge Step:



Analysis of Recursive Divide & Conquer Algorithm

● Sort points:   only once
● O(n log n)

● Split Step: 
● n splits

● Merge Step:
● n merges
● each of the n points will 

be removed at most once

● Overall:
● O(n log n)



Beyond 2D Planar Convex Hulls
● 3D Convex Hulls…  & higher dimensions!
● Image Based Visual Hulls (not the same!)

http://diskhkme.blogspot.com/2015/10/con
vex-hull-algorithm-in-unity-2-3d.htmlImage-Based Visual Hulls, 

Matusik et al, SIGGRAPH 2000
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Applications for Computational Geometry
● Computer Graphics / Games / Virtual Reality / Computer Vision

primitive intersections, hidden surface removal, ray tracing, collision detection
● Robotics

motion planning, kinematics, robot arm placement
● Geographics Information Systems (GIS)

modeling terrain, river networks, average rainfall, population, map overlays
● CAD/CAM (manufacturing)

intersection & union of objects, physical simulations, feasibility of assembly
● Other: Molecular Modeling, Optical Character Recognition (OCR), etc.
● General purpose database / data record comparisons 

can be very high dimension! (more than 3D!)



Introductions
● Let’s go around the “room” and introduce ourselves

Share anything you are comfortable sharing

● Name
● Current degree program (department, major, dual major)
● Number of terms you’ve been at RPI
● Possible connections to Computational Geometry…

● Prior course work 
● Current research
● Extra-curricular interests

● What you hope to learn this semester
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