
CSCI 4560/6560 Computational Geometry
https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/S22/

Lecture 3:
Map Overlay &

Adjacency Data Structures

Outline for Today

● Questions about Homework 1?
Questions about CGAL/Qt installation?

● Today’s Motivation
● Minimal Representation (e.g., Essentially Data File Formats)
● Proper Data Structures w/ Adjacency
● Line Sweep Algorithm for Map Overlay
● Next Time

CGAL / Qt Installation Notes
● Windows Notes

● Make sure you’re not using your WSL (Windows Subsystem for Linux / Ubuntu)
or Cygwin terminals. Why does Windows have so many terminals???

● You don’t want to install the packages in WSL (apt install …)
● You will use a Microsoft Visual Studio compiler. Not g++ or clang in WSL or Cygwin.
● Be careful about 32 vs. 64 – either is fine! Just need to be consistent.

● Linux Notes
● Check the version of CGAL. On Ubuntu 18.04 apt install only gets you CGAL 4.x

All of the newer examples and documentation require CGAL 5.x – more work :(
● You may need upgrade cmake – more work :(

● Mac Notes
●

HW1 autograding
on Submitty not
yet finished…

Outline for Today

● Questions about Homework 1?
Questions about CGAL/Qt installation?

● Today’s Motivation
● Problem Statement
● Definition: Planar Subdivision
● Euler’s Formula

● Minimal Representation (e.g., Essentially Data File Formats)
● Proper Data Structures w/ Adjacency
● Line Sweep Algorithm for Map Overlay
● Next Time

Motivation for Last Lecture…
● 2 map layers storing the

rivers & roads in NYS
● Each road/river stored as

a polyline - sequence of
line segments

● Find all intersections
between a road segment
and a river segment

● These are the bridges
we need to build,
inspect, repair, etc.

https://upload.wikimedia.org/wikipedia/commons/1/17/NYInterstates.svghttps://www.mapsof.net/new-york/new-york-rivers-and-lakes

Today’s Motivation
● Cartography (map

making) is not just
river and road polylines,
it is also
the areas or regions

● How do we describe
and store a region?

● How do we overlay,
intersect, & union
map areas or regions?

https://www.natureconservancy.ca/assets/images/graphics/nat/maps/Forest-regions-map-NCC-1000px-custom.jpg

Today’s Motivation

● “What is the total length of
roads through forests?”

→ Need to compute
intersection of line
segments with
areas/regions.

Frank Staals, http://www.cs.uu.nl/docs/vakken/ga/2021/

Today’s Motivation

● “What is the total area
of all lakes that occur
over the geological soil
type “rock”?

→ Need to compute
intersection of
areas/regions from two
or more map layers

Frank Staals, http://www.cs.uu.nl/docs/vakken/ga/2021/

Boolean Operations

Intersection: green ⋂ blue Union: green ⋃ blue

green - blue blue - green
Computational Geometry

Algorithms and Applications,
de Berg, Cheong, van Kreveld

and Overmars, Chapter 2

http://matter.sawkmonkey.com/raytracer/csg.html
http://en.wikipedia.org/wiki/

Constructive_solid_geometry#/media/File:Csg_tree.png

CSG: Constructive Solid Geometry

Intersection: green ⋂ blue Union: green ⋃ blue

green - blue blue - green

Outline for Today

● Questions about Homework 1?
Questions about CGAL/Qt installation?

● Today’s Motivation
● Problem Statement
● Definition: Planar Subdivision
● Euler’s Formula

● Minimal Representation (e.g., Essentially Data File Formats)
● Proper Data Structures w/ Adjacency
● Line Sweep Algorithm for Map Overlay
● Next Time

How to Represent Areas/Regions of a Plane?

● A single map layer will
label / subdivide the plane into
non-overlapping regions

● The regions will be
two-dimensional (planar)

● The regions may not be convex!
● The regions may have

holes within them!
● Regions may be disconnected

https://www.natureconservancy.ca/assets/images/graphics/nat/maps/Forest-regions-map-NCC-1000px-custom.jpg

Planar Subdivision
● Edges are straight lines.
● An edge is “open” - it doesn’t

include it’s endpoints.
● A face doesn’t include any points

on its edges (or the vertices).
● Exactly one face, the “outer face”,

is unbounded

Every point in the plane is either
a vertex, or on an edge, or on a face.

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 2

Euler’s Formula for Planar Subdivision/Graph

For a planar, connected subdivision/graph
with V vertices, E edges, and F faces → V − E +F = 2

Frank Staals, http://www.cs.uu.nl/docs/vakken/ga/2021/
V − E +F > 2 for unconnected an graph

V + F = E + 2

Outline for Today

● Questions about Homework 1?
Questions about CGAL/Qt installation?

● Today’s Motivation
● Minimal Representation (e.g., Essentially Data File Formats)

● List of Edges
● List of Polygons
● List of Unique Vertices & Indexed Faces

● Proper Data Structures w/ Adjacency
● Line Sweep Algorithm for Map Overlay
● Next Time

List of Edges:
 (3,6,2), (-6,2,4)

(2,2,4), (0,-1,-2)

(9,4,0), (4,2,9)

(8,8,7), (-4,-5,1)

(-8,2,7), (1,2,-7)

(3,0,-3), (-7,4,-3)

(9,4,0), (4,2,9)

(3,6,2), (-6,2,4)

(-3,0,-4), (7,-3,-4)

Difficult Query:
How many faces are in this graph?

List of Polygons:

(3,-2,5), (3,6,2), (-6,2,4)

(2,2,4), (0,-1,-2), (9,4,0), (4,2,9)

(1,2,-2), (8,8,7), (-4,-5,1)

(-8,2,7), (-2,3,9), (1,2,-7)

Expensive (& Not Robust) Query:
Which faces touch the quadrilateral face?

List of Unique Vertices & Indexed Faces:
(-1, -1, -1)
(-1, -1, 1)
(-1, 1, -1)
(-1, 1, 1)
(1, -1, -1)
(1, -1, 1)
(1, 1, -1)
(1, 1, 1)

1 2 4 3
5 7 8 6
1 5 6 2
3 4 8 7
1 3 7 5
2 6 8 4

Vertices:

Faces:

Expensive Query:
Which faces use the upper left vertex?

Problems with Simple Lists
• No Neighbor /

Adjacency
Information

• Linear-time
Searches

• Adjacency is implicit for structured meshes, but
what do we do for unstructured meshes?

Outline for Today

● Questions about Homework 1?
Questions about CGAL/Qt installation?

● Today’s Motivation
● Minimal Representation (e.g., Essentially Data File Formats)
● Proper Data Structures w/ Adjacency

● Simple / Exhaustive Adjacency
● Fixed Storage Data Structures - Winged Edge
● Fixed Computation Data Structures - Half Edge

● Line Sweep Algorithm for Map Overlay
● Next Time

Mesh Data
• So, in addition to:

– Geometric Information (position)
– Attribute Information (color, texture,

temperature, population density, etc.)

• Let’s store:
– Topological Information (adjacency, connectivity)

Simple / Exhaustive Adjacency
• Each element (vertex, edge, and face) has a list of

pointers to all incident elements
• Queries depend only on local complexity of mesh
• Data structures do not have fixed size
• Slow! Big! Too much work to maintain!

Original slide from
Justin Legakis

Outline for Today

● Questions about Homework 1?
Questions about CGAL/Qt installation?

● Today’s Motivation
● Minimal Representation (e.g., Essentially Data File Formats)
● Proper Data Structures w/ Adjacency

● Simple / Exhaustive Adjacency
● Fixed Storage Data Structures - Winged Edge
● Fixed Computation Data Structures - Half Edge

● Line Sweep Algorithm for Map Overlay
● Next Time

Winged Edge
(Baumgart, 1975)
• Edges will store everything!
• Vertices and Faces will point to

an edge
• Data Structure Size?

• How do we gather all faces
surrounding one vertex?

VERTEX

EDGE

FACE

Original slide from
Justin Legakis

Winged Edge
(Baumgart, 1975)
• Edges will store everything!
• Vertices and Faces will point to

an edge
• Data Structure Size?

Fixed
• How do we gather all faces

surrounding one vertex?
Messy, because there is
no CONSISTENT way to
order pointers! VERTEX

EDGE

FACE

Consistent Edge
Orientation
● It is desirable to have

a consistent orientation for
edges that define the boundary
of a region / face.

● This will clearly indicate which
points are inside/on the face.

● Especially if the face has one
or more interior holes.

Counter-clockwise in this image…
but don’t be surprised to see
different standards…

Consistent Edge
Orientation
● It would be useful to have a consistent

orientation (clockwise or counterclockwise)
for all edges that define the boundary
of a region / face.

● This will simplify traversal around the
boundary – reducing if/else branches, etc.

● However, most meshes cannot be
labeled such that the edges of every
face are consistently oriented.

Outline for Today

● Questions about Homework 1?
Questions about CGAL/Qt installation?

● Today’s Motivation
● Minimal Representation (e.g., Essentially Data File Formats)
● Proper Data Structures w/ Adjacency

● Simple / Exhaustive Adjacency
● Fixed Storage Data Structures - Winged Edge
● Fixed Computation Data Structures - Half Edge

● Line Sweep Algorithm for Map Overlay
● Next Time

HalfEdge (Eastman, 1982)
• Every edge is represented by

two directed HalfEdge structures
• Each HalfEdge stores:

– vertex at end of
directed edge

– symmetric half edge
– face to left of edge
– next points to the

HalfEdge counter-
clockwise around
face on left

• Orientation is essential, but
can be done consistently!

Original slide from Justin Legakis

HalfEdge (Eastman, 1982)
• Starting at a half edge, how do we find:

the other vertex of the edge?
the other face of the edge?
the clockwise edge around

the face at the left?
all the edges surrounding

the face at the left?
all the faces surrounding

the vertex?
Original slide from Justin Legakis

HalfEdge (Eastman, 1982)
• Loop around a Face:
HalfEdgeMesh::FaceLoop(HalfEdge *HE) {
 HalfEdge *loop = HE;
 do {
 loop = loop->Next;
 } while (loop != HE);
}

• Loop around a Vertex:
HalfEdgeMesh::VertexLoop(HalfEdge *HE) {
 HalfEdge *loop = HE;
 do {
 loop = loop->Next->Sym;
 } while (loop != HE);
}

Original slide from Justin Legakis

HalfEdge (Eastman, 1982)
• Data Structure Size?

• Data:
– geometric information stored at Vertices
– attribute information in Vertices, HalfEdges, and/or Faces
– topological information in HalfEdges only!

• Orientable surfaces only (no Mobius Strips!)
• Local consistency everywhere implies global consistency
• Time Complexity?

HalfEdge (Eastman, 1982)
• Data Structure Size?

Fixed
• Data:

– geometric information stored at Vertices
– attribute information in Vertices, HalfEdges, and/or Faces
– topological information in HalfEdges only!

• Orientable surfaces only (no Mobius Strips!)
• Local consistency everywhere implies global consistency
• Time Complexity?

linear in the amount of information gathered

HalfEdge (Eastman, 1982)
• Data Structure

Size?
Fixed

… Unless interior
holes are allowed
– then faces will
need to store a
list of one edge
for each hole.

Could be a list
of arbitrary
length!

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 2

Outline for Today

● Questions about Homework 1?
Questions about CGAL/Qt installation?

● Today’s Motivation
● Minimal Representation (e.g., Essentially Data File Formats)
● Proper Data Structures w/ Adjacency
● Line Sweep Algorithm for Map Overlay

● Enumerate Intersection Cases for Map Overlay
● Update Edges, Vertices, and Faces
● Analysis

● Next Time

Input: Doubly-connected, half-edge repr. for planar subdivisions, S1 and S2

Output: Doubly-connected, half-edge repr. for overlay subdivision O(S1,S2).

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 2

Input: Doubly-connected, half-edge repr. for planar subdivisions, S1 and S2

Output: Doubly-connected, half-edge repr. for overlay subdivision O(S1,S2).
Every face in overlay is labeled with the attribute info from a face from S1 and S2.

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 2

“soil type” = “rock”
from S1

“land type” =
“water” from S2

“Water over rock”
in overlay

● Step 1: Copy all of the half edges from both S1 and S2 to new structure D.

● Step 2: Perform the line
sweep edge intersection
algorithm from Lecture 2
to identify intersections
between a segment in S1
and a segment in S2

These edges in D will need
to be edited - cut at the
intersection point - new
edges will need to be added.
Also new vertices and new
Face edits/additions. Computational Geometry Algorithms and Applications,

de Berg, Cheong, van Kreveld and Overmars, Chapter 2

Events that will be encountered during Line Sweep

Events that will be encountered during Line Sweep

● A vertex in S1
● A vertex in S2
● Intersection between

edge in S1 and edge in S2
● Intersection between

vertex in S1 and edge in S2
● Intersection between

edge in S1 and vertex in S2
● Intersection between

vertex in S1 and vertex in S2

Must handle each case…

● Existing half edges from S1 (or S2) will be edited (origin point does not
change, destination point changed to the intersection point).

● New edges will be added (origin at intersection, destination at the original
edge’s destination).

Frank Staals, http://www.cs.uu.nl/docs/vakken/ga/2021/

● Existing half edges from S1 (or S2) will be edited (origin point does not
change, destination point changed to the intersection point).

● New edges will be added (origin at intersection, destination at the original
edge’s destination).

● New vertex will be
added

Frank Staals, http://www.cs.uu.nl/docs/vakken/ga/2021/

● Symmetric / opposite edges (re-)connected
● Next edge cycles updated

Construct Faces of the New Subdivision
● Determine cycles of edges
● Determine outer

boundaries
● Create the

unbounded face
● Determine inner

components
(if any) of
each face

● Determine
connected
components

Frank Staals, http://www.cs.uu.nl/docs/vakken/ga/2021/

Outer Component / Inner Component / Incident Face

* not covered
 in detail

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 2

Outline for Today

● Questions about Homework 1?
Questions about CGAL/Qt installation?

● Today’s Motivation
● Minimal Representation (e.g., Essentially Data File Formats)
● Proper Data Structures w/ Adjacency
● Line Sweep Algorithm for Map Overlay

● Enumerate Intersection Cases for Map Overlay
● Update Edges, Vertices, and Faces
● Analysis

● Next Time

Analysis

● Let S1 be a subdivision of complexity n1,
let S2 be a subdivision of complexity n2, and let n = n1 +n2.

● The overlay of S1 and S2 can be constructed in O(n log n + k log n)
time, where k is the complexity of the overlay.

● Copying the edges from S1 and S2 takes O(n) time
● The planar sweep takes O(n log n + k log n) time [prev. lecture]
● Constructing the faces take O(k) time.
● Labeling the faces with the face attributes from S1 and S2

is O(n log n + k log n) * not covered in detail

Analysis

● S1 has complexity n1
● S2 has complexity n2
● n = n1 +n2

● k is the complexity of the
overlay of S1 and S2

● In the worst case:

Computational Geometry: An Introduction
Preparata & Shamos, Springer 1985

V + F = E + 2

Complexity is # of edges or # of vertices + # of faces

Analysis

● S1 has complexity n1
● S2 has complexity n2
● n = n1 +n2

● k is the complexity of the
overlay of S1 and S2

● In the worst case:
k is O(n1 * n2) = O(n2)

Computational Geometry: An Introduction
Preparata & Shamos, Springer 1985

V + F = E + 2

Complexity is # of edges or # of vertices + # of faces

Outline for Today

● Questions about Homework 1?
Questions about CGAL/Qt installation?

● Today’s Motivation
● Minimal Representation (e.g., Essentially Data File Formats)
● Proper Data Structures w/ Adjacency
● Line Sweep Algorithm for Map Overlay
● Next Time

Next Time… Polygon Triangulation

