Lecture 5: Triangulation, part 2
Outline for Today

- Homework 2 Posted
- Last Time: Art Gallery Problem & Triangulation
- Improved Triangulation Algorithm
- Definition: Monotone Polygon
- Splitting into Monotone Polygons
- Triangulating a Monotone Polygon
- Analysis of Improved Triangulation Algorithm
- Future Lecture: Additional Triangulation Goals
Homework 2

- Use CGAL’s Surface Mesh (Halfedge) data structure
 - Input: all edges
 - Output: all faces on any boundary
 - Input: 1 edge on a boundary
 - Output: all faces on that boundary

- Posted late… deadline extended until Monday 1/31, but please make progress before Friday, so we can discuss questions :)

input

output
Homework 2

- Each Halfedge stores:
 - **vertex** at end of directed edge
 - **symmetric** halfedge
 - **face** to left of edge
 - **next** points to the Halfedge counterclockwise around face on left

Image from Justin Legakis
Outline for Today

- Homework 2 Posted
- Last Time: Art Gallery Problem & Triangulation
- Improved Triangulation Algorithm
- Definition: Monotone Polygon
- Splitting into Monotone Polygons
- Triangulating a Monotone Polygon
- Analysis of Improved Triangulation Algorithm
- Future Lecture: Additional Triangulation Goals
Last Time?

- The Art Gallery Problem: Place cameras for 100% coverage of a simple polygon (no interior holes).
- Triangulate, and place cameras on the $\frac{1}{3}$ of the vertices, ensuring every triangle has one vertex with a camera.
Cut the input on a “Diagonal” & Recurse

- Diagonal should connect **two non-adjacent vertices** on the polygonal boundary.
- Diagonal must not be **outside the polygon**.
- Diagonal may not **cross any edge**.
- Diagonal should not **pass through any other vertex**.
How do we find a Valid Diagonal?

- Start at the leftmost vertex, \(v \)
 - NOTE: If two or more vertices have the same \(x \) label, choose the one with smaller \(y \) label.
- Find vertices \(u \) and \(w \), adjacent to \(v \)
- Check if the line \(uw \) is a valid diagonal.
 - This line does not pass through \(v \).
 - Does it intersect other line segments?
 - Does it pass through any other vertices?
 - Does it lie completely outside of the polygon? (possible if one of the vertices is the rightmost vertex)
How do we find a Valid Diagonal?

- If it does cross another line segment, there must be one or more vertices inside the triangle uvw.
- Starting at the intersection, walk along the boundary to find those vertices.
- Choose the vertex v', furthest from the line segment uw.
- Draw the diagonal from v to v'.

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3
Cut on Diagonal & Recurse Analysis

- What is the worst case running time to triangulate a non-convex, simple polygon with n vertices?

- Identify a legal diagonal
 - $O(n)$ in worst case
- Split into two smaller polygons
 - Worst case: $m_1 = 3$ vertices and $m_2 = n-1$ vertices

- Overall: $O(n^2)$ running time

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3
Outline for Today

● Homework 2 Posted
● Last Time: Art Gallery Problem & Triangulation
● Improved Triangulation Algorithm
● Definition: Monotone Polygon
● Splitting into Monotone Polygons
● Triangulating a Monotone Polygon
● Analysis of Improved Triangulation Algorithm
● Future Lecture: Additional Triangulation Goals
A Convex Polygon is easy to Triangulate
A Convex Polygon is easy to Triangulate

- Pick any vertex and connect it to every other vertex (except 2 adjacent vertices)

- Unfortunately, breaking a non-convex polygon into convex polygons is not easy.
Definition: Monotone with Respect to Y-Axis

- The intersection of the polygon with any line perpendicular to the y-axis is connected.

- The intersection is either
 - empty (above or below the polygon),
 - one point (top or bottom vertex), or
 - a line segment.
Not Monotone, with Respect to Y-Axis

- The intersection of the polygon with any line perpendicular to the y-axis is connected.

- The intersection is either
 - empty (above or below the polygon),
 - one point (top or bottom vertex), or
 - a line segment.
If a Polygon is Monotone…

- We can start from the top vertex (largest y coordinate), and walk “down” the left side to the bottom vertex (smallest y coordinate). Each step moves downwards or horizontally – never upwards.

- Similarly we can walk down the right side of the polygon.
This Polygon is not Monotone…

- The left side of this polygon *does not monotonically decrease*

- We’ll need to break this polygon into pieces…

- At vertex v – a “turn vertex”!
Outline for Today

● Homework 2 Posted
● Last Time: Art Gallery Problem & Triangulation
● Improved Triangulation Algorithm
● Definition: Monotone Polygon
● Splitting into Monotone Polygons
● Triangulating a Monotone Polygon
● Analysis of Improved Triangulation Algorithm
● Future Lecture: Additional Triangulation Goals
Identify Vertex Types
Identify Vertex Types

- green circle = start vertex
- red circle = end vertex
- black circle = regular vertex
- blue triangle = split vertex
- pink triangle = merge vertex

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3
Identify Vertex Types

- Direction (up or down) of adjacent edges
- Interior angle at vertex (> 180° or < 180°)

- = start vertex
- = end vertex
- = regular vertex
- = split vertex
- = merge vertex
DEGENERACY NOTE
“Break Ties” consistently

- p is “below” q if $p_y < q_y$ or $p_y = q_y$ and $p_x > q_x$
- p is “above” q if $p_y > q_y$ or $p_y = q_y$ and $p_x < q_x$
Lemma 3.4: A polygon is y-monotone if it has no split vertices or merge vertices.
Lemma 3.4: A polygon is y-monotone if it has no split vertices or merge vertices.
Eliminate Merge & Split Vertices
Eliminate Merge & Split Vertices

- Cut polygon on a diagonal going upwards from every split vertex.
- And downwards from every merge vertex.
- Make sure these diagonals don’t intersect the polygon or another diagonal!

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3
Eliminate Merge & Split Vertices

- Cut polygon on a diagonal going upwards from every split vertex.
- And downwards from every merge vertex.

- Make sure these diagonals don’t intersect the polygon or another diagonal!

- End result is monotone polygons!
How do we decide what to connect them to?

- Perform line sweep from top to bottom
- When we find split vertex v_i, connect it to a vertex above us…
- Which vertex?

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3
How do we decide what to connect them to?

- Perform line sweep from top to bottom
- When we find split vertex v_i, connect it to a vertex above us...
- Which vertex?
- Find **line to left, e_j, and to right, e_k, of v_i** on the current sweep line.
- Locate the lowest point between these two lines (a merge vertex)
- If none, take the upper end point of edge e_j or edge e_k

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3
How do we decide what to connect them to?

- Perform line sweep from top to bottom
- When we find split vertex v_i, connect it to a vertex above us…
- Which vertex?

- Find line to left, e_j, and to right, e_k, of v_i on the current sweep line.
- Locate the lowest point between these two lines (a merge vertex)
- If none, take the upper end point of edge e_j or edge e_k
Outline for Today

- Homework 2 Posted
- Last Time: Art Gallery Problem & Triangulation
- Improved Triangulation Algorithm
- Definition: Monotone Polygon
- Splitting into Monotone Polygons
- **Triangulating a Monotone Polygon**
- Analysis of Improved Triangulation Algorithm
- Future Lecture: Additional Triangulation Goals
Triangulate a Monotone Polygon?
Triangulate a Monotone Polygon

- Can we always just draw a zig zag down the middle of a monotone polygon?

- Unfortunately no, it’s a little more complicated
Triangulate a Monotone Polygon

Triangulate a Monotone Polygon

- Sort all of the points vertically
- Push top two points onto a stack data structure
- Process the remaining points, one at a time, from top to bottom
- If you can…
 - make a triangle with the new point and the last two points on the stack
 - & remove 1 point
 - & repeat
- If not, push the new point on the stack

Triangulate a Monotone Polygon

- Vertices that have been finished
- Triangles that have already been added
- Vertices currently on the stack form an “upside down funnel” on one side (e.g., right side)
Triangulate a Monotone Polygon

- Vertices that have been finished
- Triangles that have already been added
- Vertices currently on the stack form an “upside down funnel” on one side (e.g., right side)
- The next vertex below us will:
 - Be from the (left) side and create a “fan”,
 - Leaving only 2 vertices on the stack
Triangulate a Monotone Polygon

- Vertices that have been finished
- Triangles that have already been added
- Vertices currently on the stack form an “upside down funnel” on one side (e.g., right side)
- The next vertex below us will:
 - Be from the (left) side and create a “fan”, Leaving only 2 vertices on the stack
 - Be on the (right) side and:
 - **Bend the funnel further from vertical axis**
Triangulate a Monotone Polygon

- Vertices that have been finished
- Triangles that have already been added
- Vertices currently on the stack form an “upside down funnel” on one side (e.g., right side)
- The next vertex below us will:
 - Be from the (left) side and create a “fan”, leaving only 2 vertices on the stack
 - Be on the (right) side and:
 - Bend the funnel further from vertical axis
 - Form one or more triangles
Outline for Today

- Homework 2 Posted
- Last Time: Art Gallery Problem & Triangulation
- Improved Triangulation Algorithm
- Definition: Monotone Polygon
- Splitting into Monotone Polygons
- Triangulating a Monotone Polygon
- Analysis of Improved Triangulation Algorithm
- Future Lecture: Additional Triangulation Goals
Analysis?

- Line sweep algorithm: cut into monotone polygons
- Use stack to triangulate monotone polygon
- Overall →
Analysis?

- Line sweep algorithm: cut into monotone polygons
 - Sort all vertices vertically -
 - Maintain horizontal sorting of active vertices -
 - Locate “helper” vertex for each split/merge -
 - →

- Use stack to triangulate monotone polygon
 - Don’t need to sort (just walk boundary)
 - Each vertex is added once -
 - Each vertex (beyond first two) adds one ck triangle when it is removed from stack -
 - →

- Overall →
Analysis?

- Line sweep algorithm: cut into monotone polygons
 - Sort all vertices vertically - $O(n \log n)$
 - Maintain horizontal sorting of active vertices - $O(\log n)$
 - Locate “helper” vertex for each split/merge - $O(\log n)$
 - $\rightarrow O(n \log n)$

- Use stack to triangulate monotone polygon
 - Don’t need to sort (just walk boundary)
 - Each vertex is added once - $O(1)$
 - Each vertex (beyond first two) adds one triangle when it is removed from stack - $O(1)$
 - $\rightarrow O(n)$

- Overall $\rightarrow O(n \log n)$

 Better than $O(n^2)$ algorithm from previous lecture!
Also Works for Non-Simple Polygons (w/ interior holes)

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3
And it also works for Arbitrary Planar Subdivisions
Outline for Today

- Homework 2 Posted
- Last Time: Art Gallery Problem & Triangulation
- Improved Triangulation Algorithm
- Definition: Monotone Polygon
- Splitting into Monotone Polygons
- Triangulating a Monotone Polygon
- Analysis of Improved Triangulation Algorithm
- Future Lecture: Additional Triangulation Goals
Element Quality and Deformation Simulation

- The triangulation of a polygon is not unique!
- Do we care which triangulation is produced?
- Are some triangulations better for some applications?
Element Quality and Deformation Simulation

- The triangulation of a polygon is not unique!
- Do we care which triangulation is produced?
- Are some triangulations better for some applications?
Element Quality and Deformation Simulation

Mueller, Dorsey, McMillan, Jagnow, & Cutler

Stable Real-Time Deformations

Symposium on Computer Animation 2002
Degenerate/Ill-conditioned 2D Elements

- a.k.a. how “equilateral” are the *triangles*?
 - Maximize the minimum angle
 - Minimize the maximum angle
 - Maximize the shortest edge
 - Ratio of longest edge to shortest edge
 - Ratio of area to area of circumscribed circle
Degenerate/Ill-conditioned 3D Elements

• a.k.a. how “equilateral” are the *tetrahedra*?
 – Ratio of volume2 to surface area3
 – Smallest *solid* angle
 – Ratio of volume to volume of smallest circumscribed sphere
Element Quality and Deformation Simulation
Multiple Materials

Mueller, Dorsey, McMillan, Jagnow, & Cutler

Stable Real-Time Deformations

Symposium on Computer Animation 2002