CSCI 4560/6560 Computational Geometry

Lecture 6: Half-Space Intersections

Outline for Today

- Homework 2 Questions?
- Last Time: Monotone Polygons \& Improved Triangulation Algorithm
- Motivation: Manufacturing by Mold Casting
- Dual Representation: Planar Constraints
- Half-Plane / Half-Space Intersection
- Incremental Linear Programming
- Related Application: Japanese Wood Joints
- Related Application: Automatic Robotic Part Sorting
- Next Time: Point Location

Homework 2

- Each Halfedge stores:
- vertex at end of directed edge
- symmetric halfedge
- face to left of edge
- next points to the Halfedge counterclockwise around face on left

Image from Justin Legakis

Homework 2

- Use CGAL's

Surface Mesh
(Halfedge)
data structure

- Input: all edges
- Output: all faces on any boundary

- Input: 1 edge on a boundary
- Output: all faces on that boundary

How to Debug Installation Problems?

- Google the error message
- likely someone else has had the problem and there may be a solution out there for you to try
- Read the error message carefully
- Google to understand the terms and information in the error
- Read the installation documentation carefully
- Start over - and make sure you have
- good internet
- good power
- enough hard drive
- enough time to finish install

How to Read Software Documentation?

- Read carefully, start at the introduction, understand the organization of the documentation
- Understand the expectations of the functions (requirements on function arguments, etc)
- CGAL classes have
- An overview section, which breaks implementation into categories,
- hyperlinks to related pages (good, but sometimes navigation may be confusing)

What is "Bad" about (some) Software Documentation?

How do we write Good Software Documentation?
 What can we do to avoid creating more "Bad" Software Documentation?

- Hyperlinks \& navigation can be confusing
- Avoid duplicate/redundant information
- Search bar - would be nice to be able to filter by type, etc.
- Functions (overridden) with same name - unclear which one I want
- Documentation assumptions may be unclear to newbies
- Include usage examples for every function - e.g., cppreference.com
- Include time complexity of the function
- Enumerate all of the exceptions (errors) that can happen
- What do you need to \#include to use this function
- Description of all input parameters \& output \& types

Outline for Today

- Homework 2 Questions?
- Last Time: Monotone Polygons \& Improved Triangulation Algorithm
- Motivation: Manufacturing by Mold Casting
- Dual Representation: Planar Constraints
- Half-Plane / Half-Space Intersection
- Incremental Linear Programming
- Related Application: Japanese Wood Joints
- Related Application: Automatic Robotic Part Sorting
- Next Time: Point Location

Definition: Monotone with Respect to Y-Axis

- The intersection of the polygon with any line perpendicular to the y-axis is connected.
- The intersection is either
- empty (above or below the polygon),
- one point (top or bottom vertex), or
- a line segment.

Identify Vertex Types

- Direction (up or down) of adjacent edges
= start vertex
- Interior
angle at vertex
(> 180° or
$<180^{\circ}$)
- end vertex
- = regular vertex
$\Delta=$ split vertex
$\nabla=$ merge vertex

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3

How do we decide what to connect them to?

- Perform line sweep from top to bottom
- When we find split vertex v_{i}, connect it to a vertex above us...
- Which vertex?
- Find line to left, e_{j}, and to right, e_{k}, of v_{i} on the current sweep line.
- Locate the lowest point between these two lines (a merge vertex)
- If none, take the upper end point of edge e_{j} or edge e_{k}

Triangulate a Monotone Polygon

- Sort all of the points vertically
- Push top two points onto a stack data structure
- Process the remaining points, one at a time, from top to bottom
- If you can...
- make a triangle with the new point and the last two points on the stack
- \& remove 1 point
- \& repeat
- If not, push the new point on the stack

Outline for Today

- Homework 2 Questions?
- Last Time: Monotone Polygons \& Improved Triangulation Algorithm
- Motivation: Manufacturing by Mold Casting
- Dual Representation: Planar Constraints
- Half-Plane / Half-Space Intersection
- Incremental Linear Programming
- Related Application: Japanese Wood Joints
- Related Application: Automatic Robotic Part Sorting
- Next Time: Point Location

Motivation: Manufacturing by Mold Casting

"Rules" for the Mold Casting Problem

- Single piece mold
- Cannot break mold
- Rigid mold
- not flexible, e.g., silicone
- Polyhedral objects
- no curved surfaces
- Must remove object using translation only, no rotation
- cannot mold a screw

Motivation: Manufacturing by Mold Casting

Failure!

Cannot be unmolded without breaking mold

"Designing Effective Step-by-step Assembly Instructions"
Agrawala et al., SIGGRAPH 2003

- Inspired by robotics planning research
- Need to solve planning \& presentation simultaneously for best result

"Castable" Problem Statement

- Given a polyhedron with polygonal facets, can it be cast from a single mold?
- What is the shape of the mold?
- How is the part oriented in the mold?
- Which is the top facet?
- What direction is the object translated to remove it from the mold?

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Problem Statement

- The translation direction is not necessarily perpendicular to the top facet of the mold!
- The translation direction may not be unique
- there may be
multiple answers!

Outline for Today

- Homework 2 Questions?
- Last Time: Monotone Polygons \& Improved Triangulation Algorithm
- Motivation: Manufacturing by Mold Casting
- Dual Representation: Planar Constraints
- Half-Plane / Half-Space Intersection
- Incremental Linear Programming
- Related Application: Japanese Wood Joints
- Related Application: Automatic Robotic Part Sorting
- Next Time: Point Location

Lemma 4.1 The polyhedron P can

 be removed from its mold by a translation in direction dif and only if d makes an angle of at least 90° with the outward normal of all ordinary facets of P.

Lemma 4.1 The polyhedron P can be removed from its mold by a translation in direction d
if and only if d makes an angle of at least 90° with the outward normal of all ordinary facets of P.

If the piece collides with mold facet \hat{f} it must have angle $>90^{\circ}$, which would imply an angle < 90° with the corresponding piece facet f

Definition: Dot Product

- A unit vector has length $=1$:

$$
\begin{gathered}
\operatorname{sqrt}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)=1 \\
d_{x}^{*} n_{x}+d_{y}^{*} n_{y}+d_{z}^{*} n_{z}
\end{gathered}
$$

- The dot product of two unit vectors is:

Dot product = 1
When d and n are parallel in the same direction

Dot product $=0$ When d and n are perpendicular $\left(90^{\circ}\right)$

Dot product $=-1$
When d and n are parallel in the opposite directions

Lemma 4.1 The polyhedron P can

 be removed from its mold by a translation in direction dif and only if d makes an angle of at least 90° with the outward normal of all ordinary facets of P.

Note: It will NOT be necessarily to change direction during unmolding. If the object can be removed from the mold, a single direction is sufficient.

"Dual" Representation

- Every upwards direction $\mathrm{d}=\left(\mathrm{d}_{\mathrm{x}}, \mathrm{d}_{\mathrm{y}}, \mathrm{d}_{\mathrm{z}}\right)$ can be represented as a point on the $z=1$ plane: $d=\left(d_{x}, d_{y}, 1\right)$
- Not a unit vector, that's ok
- Convert our 3D problem to 2D
- All valid solutions to the unmolding problem form

Outline for Today

- Homework 2 Questions?
- Last Time: Monotone Polygons \& Improved Triangulation Algorithm
- Motivation: Manufacturing by Mold Casting
- Dual Representation: Planar Constraints
- Half-Plane / Half-Space Intersection
- Incremental Linear Programming
- Related Application: Japanese Wood Joints
- Related Application: Automatic Robotic Part Sorting
- Next Time: Point Location
- Each facet places a linear constraint on the valid unmolding directions

$$
n_{x} d_{x}+n_{y} d_{y}+n_{z} \leq 0
$$

- This half-plane / half-space space can be visualized on our dual representation $z=1$

- That region is the intersection of the linear constraints from each face of the piece.
- That region is convex!

Half Space Intersection

(i)

finite bounded region
(ii)

degenerate case:

(v)

[^0]
Is it Castable? Algorithm

- Given an input polyhedron with n facets
- Try each facet as the "top" facet
- Intersect the half-spaces of all other facets
- If it is non-empty, we have a solution!

Compute Halfspace Intersection

- Given n linear constraints (n halfspaces)
- Intersection will be a convex region in the $z=1$ plane with at most n edges
- Let's compute intersection via Divide \& Conquer:
- Split half spaces into two groups
- Compute intersection
- Merge intersections

Merge Two Convex Regions

- From previous lecture, we can compute the intersection/overlay general (non-convex) polygonal shapes in $O(n \log n+k \log n)$
- k is the complexity, \# of faces on output polygon
- In this case $k \leq n$
- Potential Complication?

The shapes may be unbounded

Plane Sweep to Compute Overlay

- Worst case sweep line horizontal complexity is constant, not n
- Track left \& right faces of each shape $C_{1} \& C_{2}$
- We can handle unbounded by setting one or more of these edges to NULL

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 4

Is it Castable? Algorithm Analysis

- Given an input polyhedron with n facets
- Try each facet as the "top" facet
- Intersect the half-spaces of all other facets
- Merge 2 convex regions
- Divide \& Conquer Recursion
- If it is non-empty, we have a solution!
- Overall:

Is it Castable? Algorithm Analysis

- Given an input polyhedron with n facets
- Try each facet as the "top" facet $\rightarrow \mathrm{O}(\mathrm{n})$
- Intersect the half-spaces of all other facets
- Merge 2 convex regions

$$
\rightarrow \mathrm{O}(\mathrm{n})
$$

- Divide \& Conquer Recursion

$$
\rightarrow \mathrm{O}(\mathrm{n} \log \mathrm{n})
$$

- If it is non-empty, we have a solution!
- Overall:

Is it Castable? Algorithm Analysis

- Given an input polyhedron with n facets
- Try each facet as the "top" facet

$$
\rightarrow \mathrm{O}(\mathrm{n})
$$

- Intersect the half-spaces of all other facets
- Merge 2 convex regions
$\rightarrow \mathrm{O}(\mathrm{n})$
- Divide \& Conquer Recursion

$$
\rightarrow \mathrm{O}(\mathrm{n} \log \mathrm{n})
$$

- If it is non-empty, we have a solution!
- Overall: $\quad \rightarrow \mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$

Is it Castable? Algorithm Analysis

- Given an input polyhedron with n facets
- Try each facet as the "top" facet

$$
\rightarrow \mathrm{O}(\mathrm{n})
$$

- Intersect the half-spaces of all other facets
- Merge 2 convex ians

$$
\rightarrow \mathrm{O}(\mathrm{n})
$$

- Divide \& Conquer

$$
\rightarrow \mathrm{O}(\mathrm{n} \log \pi 1
$$

- If it is non-empty, we have as
- Overall: $\rightarrow O\left(n^{2} \log n\right)$

Outline for Today

- Homework 2 Questions?
- Last Time: Monotone Polygons \& Improved Triangulation Algorithm
- Motivation: Manufacturing by Mold Casting
- Dual Representation: Planar Constraints
- Half-Plane / Half-Space Intersection
- Incremental Linear Programming
- Related Application: Japanese Wood Joints
- Related Application: Automatic Robotic Part Sorting
- Next Time: Point Location

Linear Optimization, a.k.a. Linear Programming

feasible region

objective function
Maximize

$$
c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{d} x_{d}
$$

Subject to

$$
\left.\begin{array}{r}
a_{1,1} x_{1}+\cdots+a_{1, d} x_{d} \leqslant b_{1} \\
a_{2,1} x_{1}+\cdots+a_{2, d} x_{d} \leqslant b_{2} \\
\vdots \\
a_{n, 1} x_{1}+\cdots+a_{n, d} x_{d} \leqslant b_{n}
\end{array}\right\}
$$

Linear Programming - Incremental Solution

- Order the half-space constraints in some order: $h_{1}, h_{2}, h_{3}, \ldots h_{n}$
- We will solve incremental versions of the problem: $C_{1}, C_{2}, C_{3}, \ldots C_{n}$
- Which have optimal solutions:

$$
v_{1}, v_{2}, v_{3}, \ldots v_{n}
$$

- C_{i} has with half-space constraints $\left\{h_{1}, h_{2}, h_{3}, \ldots h_{i}\right\}$ with solution v_{i}

Linear Programming - Incremental Solution

- At each step, we will add in the next halfspace constraint h_{i+1}

Infeasible - no solution

Satisfied: compute new v_{i+1}

Computing New Solution v_{i+1}

- It must lie on the constraint h_{i+1}
- Must intersect with all previous halfspaces
- Note: We are not computing or storing the feasible region, only the solution point v_{i}
- What is the running time?

Satisfied: compute new v_{i+1}

Incremental Solution - Analysis

Infeasible - no solution

Satisfied: $v_{1}=v_{i+1}$

Satisfied: compute new \boldsymbol{v}_{i+1}

Incremental Solution - Analysis

Infeasible - no solution

$\rightarrow \mathrm{O}(1)$
short circuit exit!

Satisfied: $v_{1}=v_{i+1}$

$\rightarrow O(1)$

Satisfied: compute new v_{i+1}

$\rightarrow O(n)$

Incremental Solution - Analysis

- Order the half-space constraints in some order: $h_{1}, h_{2}, h_{3}, \ldots h_{n}$
- We will solve incremental versions of the problem: $C_{1}, C_{2}, C_{3}, \ldots C_{n}$
- Which have optimal solutions:

$$
v_{1}, v_{2}, v_{3}, \ldots v_{n}
$$

- C_{i} has with half-space constraints $\left\{h_{1}, h_{2}, h_{3}, \ldots h_{i}\right\}$ with solution v_{i}

Overall:

Incremental Solution - Analysis

- Order the half-space constraints in some order: $h_{1}, h_{2}, h_{3}, \ldots h_{n}$
- We will solve incremental versions of the problem: $C_{1}, C_{2}, C_{3}, \ldots C_{n}$

$$
\rightarrow O(n)
$$

- Which have optimal solutions:

$$
v_{1}, v_{2}, v_{3}, \ldots v_{n}
$$

- C_{i} has with half-space constraints $\left\{h_{1}, h_{2}, h_{3}, \ldots h_{i}\right\}$ with solution v_{i}

Overall:
$\rightarrow O\left(n^{2}\right)$ worst case

Incremental Solution - Analysis

- Order the half-space constraints in some order: $h_{1}, h_{2}, h_{3}, \ldots h_{n}$
- We will solve incremental versions of the problem: $C_{1}, C_{2}, C_{3}, \ldots C_{n}$

$$
\rightarrow O(n)
$$

- Which have optimal solutions:

$$
v_{1}, v_{2}, v_{3}, \ldots v_{n}
$$

- C_{i} has with half-spaced

Ach! This is worse!

 $\left\{h_{1}, h_{2}, h_{3}, \ldots h_{i}\right\}$ with s. problem $O\left(n^{3}\right)$!
Overall:
 $\rightarrow O\left(n^{2}\right)$ worst case

Randomized Linear Programming

- Order the half-space constraints in some order: $h_{1}, h_{2}, h_{3}, \ldots h_{n}$
- We will solve incremental versions of the problem: $C_{1}, C_{2}, C_{3}, \ldots C_{n}$

$$
\rightarrow O(n)
$$

- Which have optimal solutions:

$$
v_{1}, v_{2}, v_{3}, \ldots v_{n}
$$

- C_{i} has with half-space constraints $\left\{h_{1}, h_{2}, h_{3}, \ldots h_{i}\right\}$ with solution v_{i}

Overall:

$\rightarrow \mathrm{O}(1)$
short circuit exit!

$$
\rightarrow O(n) \text { expected case }
$$

Can be shown that the case to recompute the solution is rare...

Randomized Linear Programming

- Order the half-space constraints in some order: $h_{1}, h_{2}, h_{3}, \ldots h_{n}$
- We will solve incremental versions of the problem: $C_{1}, C_{2}, C_{3}, \ldots C_{n}$

$$
\rightarrow O(n)
$$

- Which have optimal solutions: $v_{1}, v_{2}, v_{3}, \ldots v_{n}$
- C_{i} has with half-spe

Mold casting $\rightarrow O\left(n^{2}\right)$!

Overall:
$\rightarrow O(n)$ expected case

Outline for Today

- Homework 2 Questions?
- Last Time: Monotone Polygons \& Improved Triangulation Algorithm
- Motivation: Manufacturing by Mold Casting
- Dual Representation: Planar Constraints
- Half-Plane / Half-Space Intersection
- Incremental Linear Programming
- Related Application: Japanese Wood Joints
- Related Application: Automatic Robotic Part Sorting
- Next Time: Point Location

MECH DRAFTING Vasileios I. Koutsovoulos

https://mechdrafting.net/en/portfolio-item/japanese-joinery

Justin Legakis ~1999

http://billcutlerpuzzles.com/stock/18piece.html

http://legakis.net/justin/gallery_burr.html

Japanese Joinery Kane Tsugi

Dylan
Iwakuni

Mysterious Japanese Joinery

Hand Cutting the
 ＂Mysterious Joinery＂
 手道具で刘む
 詵の継乎

Dylan
Iwakuni

Outline for Today

- Homework 2 Questions?
- Last Time: Monotone Polygons \& Improved Triangulation Algorithm
- Motivation: Manufacturing by Mold Casting
- Dual Representation: Planar Constraints
- Half-Plane / Half-Space Intersection
- Incremental Linear Programming
- Related Application: Japanese Wood Joints
- Related Application: Automatic Robotic Part Sorting
- Next Time: Point Location

"Design of Part Feeding and Assembly Processes with Dynamics",

 Song, Trinkle, Kumar, \& Pang, MEAM 2004.
Robotics:

Automatic

 Part Sorting \& Orienting

Fig. 9. Peg able to pass through the device with optimal design parameters with center of gravity starting on the right.

Fig. 10. Peg able to pass through the device with optimal design parameters with center of gravity starting on the left.

Robotics: Automatic Part Sorting \& Orienting

Figure 4.2: Snapshots of the gravity-fed part in the feeder.

Outline for Today

- Homework 2 Questions?
- Last Time: Monotone Polygons \& Improved Triangulation Algorithm
- Motivation: Manufacturing by Mold Casting
- Dual Representation: Planar Constraints
- Half-Plane / Half-Space Intersection
- Incremental Linear Programming
- Related Application: Japanese Wood Joints
- Related Application: Automatic Robotic Part Sorting
- Next Time: Point Location

[^0]: Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 4

