CSCI 4560/6560 Computational Geometry

Lecture 8: Orthogonal Range Searching

Outline for Today

- Homework 3 Posted
- Last Time: Bounding Spheres \&

Randomized Incremental Construction

- Motivating Application: Database Queries
- Motivating Application: Graphics \& Photon Mapping
- Data Structure Choices
- Cost to construct, memory to construct, cost to query
- Review: (1D) Binary Search Trees
- 2D kD Trees \& Higher dimension kD Trees
- 2D Range Trees \& Higher Dimension Range Trees

Homework 3 - CGAL Programming Task

- Compute triangulation of input polygon \& triangulation of "pockets" outside input polygon but inside convex hull
- Compute areas
- Compute changes to boundary edges
- Leverage CGAL libraries for convex hull \& triangulation
pockets

Outline for Today

- Homework 3 Posted
- Last Time: Bounding Spheres \&

Randomized Incremental Construction

- Motivating Application: Database Queries
- Motivating Application: Graphics \& Photon Mapping
- Data Structure Choices
- Cost to construct, memory to construct, cost to query
- Review: (1D) Binary Search Trees
- 2D kD Trees \& Higher dimension kD Trees
- 2D Range Trees \& Higher Dimension Range Trees

Problem: Minimal Bounding Sphere Circle

- Input: n vertices in 3D 2D
- Assume (for convenience):
"General Position"
- No 3 points are collinear
- No 4 points lie on the same circle
- Output: 3 of those vertices uniquely define a circle such that all other points lie inside of that circle

Note: In 3D, we would output 4 vertices (4 vertices uniquely define a sphere)

Randomized Incremental Construction

- We start with all n points and the optimal minimal bounding circle, which is defined by 3 of those points.
- Each step, we randomly choose one of n points to remove.

Outline for Today

- Homework 3 Posted
- Last Time: Bounding Spheres \&

Randomized Incremental Construction

- Motivating Application: Database Queries
- Motivating Application: Graphics \& Photon Mapping
- Data Structure Choices
- Cost to construct, memory to construct, cost to query
- Review: (1D) Binary Search Trees
- 2D kD Trees \& Higher dimension kD Trees
- 2D Range Trees \& Higher Dimension Range Trees

Motivating Application: 2D Database Queries

- Return all data points with x value in
range $\left[x_{0}, x_{1}\right.$] and y value in range $\left[y_{0}, y_{1}\right]$

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 5

Higher Dimensional Database Queries

- Return all data points with x value in range $\left[x_{0}, x_{1}\right.$] and y value in range $\left[y_{0}, y_{1}\right.$] and z value in range $\left[z_{0}, z_{1}\right.$] and ...

Find all values in an axis parallel box: a "rectangular range query" a.k.a. "orthogonal range query"

Outline for Today

- Homework 3 Posted
- Last Time: Bounding Spheres \&

Randomized Incremental Construction

- Motivating Application: Database Queries
- Motivating Application: Graphics \& Photon Mapping
- Data Structure Choices
- Cost to construct, memory to construct, cost to query
- Review: (1D) Binary Search Trees
- 2D kD Trees \& Higher dimension kD Trees
- 2D Range Trees \& Higher Dimension Range Trees

Motivating Application: Photon Mapping

- Photons bounce around room and stored on each surface they hit

Using Photon Map for Rendering

- Find the tightest sphere capturing k photons
- Divide the energy from those photons by the surface area covered by that sphere
- What is the best
data structure to store millions of / photons? ${ }^{\prime}$

Data Structures Homework 8: Quad Tree

input points

after adding the $3^{\text {rd }}$ point

after adding the $1^{\text {st }}$ point

after adding 9 points

after adding the $2^{\text {nd }}$ point

after adding all 21 points

Collecting Photons from a kd tree

- Query point, and initial guess for radius (red)
- Make a rectangular/orthogonal query to the kD tree (yellow)
- $k D$ tree returns all cells that overlap with query box (blue)
- Further processing necessary to filter points inside red circle and find smallest circle capturing exactly k photons

Outline for Today

- Homework 3 Posted
- Last Time: Bounding Spheres \&

Randomized Incremental Construction

- Motivating Application: Database Queries
- Motivating Application: Graphics \& Photon Mapping
- Data Structure Choices
- Cost to construct, memory to construct, cost to query
- Review: (1D) Binary Search Trees
- 2D kD Trees \& Higher dimension kD Trees
- 2D Range Trees \& Higher Dimension Range Trees

Outline for Today

- Homework 3 Posted
- Last Time: Bounding Spheres \&

Randomized Incremental Construction

- Motivating Application: Database Queries
- Motivating Application: Graphics \& Photon Mapping
- Data Structure Choices
- Cost to construct, memory to construct, cost to query
- Review: (1D) Binary Search Trees
- 2D kD Trees \& Higher dimension kD Trees
- 2D Range Trees \& Higher Dimension Range Trees

Review: 1 Dimensional Binary Search Trees

- Everything to the left is \leq root
- Everything to the right is $>$ root

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 5

Assumptions

- No 2 data points have the same value in any dimension
... for convenience, there are workarounds
- We are given all of the data points at the start, allowing us to sort the data and construct well-balanced trees

1D BST Construction Algorithm

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 5

1D BST Construction Algorithm

- Sort the data by x value
- Put the median (middle) value at the root
- Create 2 sublists for left \& right
- Recurse

1D BST Query Algorithm

- Given a desired range [μ, μ^{\prime}]

1D BST Query Algorithm

- Given a desired range [μ, μ^{\prime}]
- Locate the leaf storing $\mu \rightarrow \mathrm{O}(\log \mathrm{n})$
- Locate the leaf storing $\mu^{\prime} \rightarrow \mathrm{O}(\log \mathrm{n})$
- Increment from $\mu \rightarrow \mu^{\prime}$
- Operator++
\rightarrow O(1) expected time
- Operator++ from $\mu \rightarrow \mu^{\prime}$

$$
\rightarrow k^{*} O(1)=O(k) \text { expected }
$$

1D BST Query Algorithm

- Given a desired range [μ, μ^{\prime}]
- Locate the leaf storing $\mu \rightarrow \mathrm{O}(\log \mathrm{n})$
- Locate the leaf storing $\mu^{\prime} \rightarrow \mathrm{O}(\log \mathrm{n})$
- Increment from $\mu \rightarrow \mu^{\prime}$
- Operator++
$\rightarrow O(1)$ expected time
- Operator++ from $\mu \rightarrow \mu^{\prime}$
$\rightarrow k^{*} O(1)=O(k)$ expected
- Equivalently: Find all subtrees between the leaves, return all values in those subtrees

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 5

Analysis: 1D Binary Search Tree

Starting with n values..

- Memory to store:
- \# of leaf nodes:
- \# of intermediate nodes:
- Height of tree:
- Time to construct:
- Sort the data:
- Place middle value at root, recurse on left \& right sublists:
- Time to query:
- For search target / output returning k values

Analysis: 1D Binary Search Tree

Starting with n values..

- Memory to store: $\rightarrow O(n)$
- \# of leaf nodes: n
- \# of intermediate nodes: n-1
- Height of tree: $\log n$
- Time to construct: $\rightarrow O(n \log n)$
- Sort the data: $O(n \log n)$
- Place middle value at root, recurse on left \& right sublists: O(n)
- Time to query: $\rightarrow O(\log n+k)$
- For search target / output returning k values

Outline for Today

- Homework 3 Posted
- Last Time: Bounding Spheres \&

Randomized Incremental Construction

- Motivating Application: Database Queries
- Motivating Application: Graphics \& Photon Mapping
- Data Structure Choices
- Cost to construct, memory to construct, cost to query
- Review: (1D) Binary Search Trees
- 2D kD Trees \& Higher dimension kD Trees
- 2D Range Trees \& Higher Dimension Range Trees

What is a k-d Tree?

2D kd Tree Construction

2D kd Tree Construction

- Make 2 sorted lists, by x value and by y value
- Alternate dimensions (first split by x then by y)
- Find the median value
- Make a copy of the sorted lists, removing values from the other side
- Recurse

2D kd Tree Query Algorithm

2D kd Tree Query Algorithm

- At each split point
- Determine if the query box overlaps the split line
- Recurse down one or both branches
- If a subtree lies complete inside the box, return all items in that subtree
- Perform filtering in the leaves as
 necessary

2D kd Tree Query Analysis

Ignore that this is quadtree

- 1 item is stored per leaf node
- For a query that will collect k items

2D kd Tree Query Analysis

Ignore that this is quadtree pretend it is kdtree

- 1 item is stored per leaf node
- For a query that will collect k items
- Best/Average(?) Case:

An approximately square query (equal width \& height)

- touches/overlaps $O(k)$ leaves
- gathering leaves $O(\log n+k)$
- Overall $\rightarrow \mathrm{O}(\log \mathrm{n}+\mathrm{k})$

2D kd Tree Query Analysis

Ignore that this is quadtree pretend it is kdtree

- 1 item is stored per leaf node
- For a query that will collect k items
- Best/Average(?) Case:

An approximately square query (equal width \& height)

- touches/overlaps $O(k)$ leaves
- gathering leaves $O(\log n+k)$
- Overall $\rightarrow \mathrm{O}(\log \mathrm{n}+\mathrm{k})$
- Worst Case Query:

For a skinny / lopsided query box

- touches/overlaps - $\sqrt{n}+k$ leaves
- gathering leaves $\mathrm{O}(\sqrt{ } n+k)$

- Overall $\rightarrow \mathrm{O}(\sqrt{ } n+k)$

Analysis: 2D kd Tree

Starting with n values..

- Memory to store: $\rightarrow O(n)$
- \# of leaf nodes: n
- \# of intermediate nodes: $n-1$
- Height of tree: $\log n$
- Time to construct: $\rightarrow O(n \log n)$
- pre-sort the data, separately in x and in $y: O(n \log n)$
- Alternate axes - place middle value at root, recurse on the two sublists: $O(n \log n)$
- Time to query: $\rightarrow O\left(n^{1 / 2}+k\right)=O(\sqrt{ } n+k)$
- For search target / output returning k values

Is Query Time $=O(\sqrt{n}+k)$ a problem?

Is Query Time $=O(\sqrt{n}+k)$ a problem?

- $O(1)<O(\log n)<O\left(\log ^{2} n\right)<O(\sqrt{n})<O(n)$

Analysis: 3D kd Tree and higher dimensions

Starting with n values..

- Memory to store: $\rightarrow O(n)$
- \# of leaf nodes: n
- \# of intermediate nodes: $n-1$
- Height of tree: $\log n$
- Time to construct: $\rightarrow O(n \log n)$
- pre-sort the data, separately in x and in y and in z: $O(n \log n)$
- Rotate through axes (x, y, z, x, \ldots) - place middle value at root, recurse on two sublists: $O(n \log n)$
- Time to query: $\rightarrow O\left(n^{2 / 3}+k\right) \rightarrow O\left(n^{(1-1 / d)}+k\right)$
- For search target / output returning k values

Is Query Time $=O\left(n^{(1-1 / d)}+k\right)$ a problem?

- Yeah, this is a problem as dimensions increase
- Common for complex databases

Outline for Today

- Homework 3 Posted
- Last Time: Bounding Spheres \&

Randomized Incremental Construction

- Motivating Application: Database Queries
- Motivating Application: Graphics \& Photon Mapping
- Data Structure Choices
- Cost to construct, memory to construct, cost to query
- Review: (1D) Binary Search Trees
- 2D kD Trees \& Higher dimension kD Trees
- 2D Range Trees \& Higher Dimension Range Trees

What is a Range Tree?

- Idea: If we use more
memory, can we reduce worst ${ }_{\text {binary search tree on }}$ case query time of kD tree?
x-coordinates
- First we organize the data in a BST by x value
- At every node in the tree, we store a pointer to a BST with the same data, but organized by y value

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 5

What is a Range Tree?

- Idea: If we use more
memory, can we reduce worst case query time of kD tree?
- First we organize the data in a BST by x value
- At every node in the tree, we store a pointer to a BST with the same data, but organized by y value

How to Construct the 2D Range Tree?

How much memory does it use?

How to Construct the 2D Range Tree?

How much memory does it use?

- Each point p is stored once in the level 1 (organized by x) tree
- And many times in level 2 (organized by y) trees
- How many level 2 trees? And how big are they?
- 1 tree with n values
- 2 trees with $\mathrm{n} / 2$ values
- 4 trees with $\mathrm{n} / 4$ values
- ...
- n trees with 1 values
$\rightarrow O(n \log n)$ memory

How to Query 2D Range Tree?

Analysis: 2D Range Tree

Starting with n values..

- Memory to store: $\rightarrow O(n \log n)$
- Time to construct: $\rightarrow O(n \log n)$
- Time to query: $\rightarrow O\left(\log ^{2} n+k\right)$

Analysis: 2D Range Tree

Starting with n values..

- Memory to store:
- Time to construct:
- Time to query:

Higher Dimensional Range Tree

- ... and can be extended to arbitrarily higher dimensions

Analysis: 3D kd Tree and higher dimensions

Starting with n values..

- Memory to store:
- Time to construct:
- Time to query:

Analysis: 3D kd Tree and higher dimensions

Starting with n values..

- Memory to store: $\rightarrow O\left(n \log ^{\alpha-1} n\right)$
- Time to construct: $\rightarrow O\left(n \log ^{d-1} n\right)$
- Time to query: $\rightarrow O\left(\log ^{d} n+k\right)$

Summary Comparison

- kD tree
- Construction time
- Memory
- Query time
- Range tree
- Construction time
- Memory
- Query time

Outline for Today

- Homework 3 Posted
- Last Time: Bounding Spheres \&

Randomized Incremental Construction

- Motivating Application: Database Queries
- Motivating Application: Graphics \& Photon Mapping
- Data Structure Choices
- Cost to construct, memory to construct, cost to query
- Review: (1D) Binary Search Trees
- 2D kD Trees \& Higher dimension kD Trees
- 2D Range Trees \& Higher Dimension Range Trees

