Lecture 9: Point Location & Trapezoidal Maps
Outline for Today

- Homework 3 Questions?
- Last Time: kD Trees & Range Trees
- Motivating Application: Point Location
- Motivating Application: 2D/3D Mouse “Picking” for Graphics
- Brute Force Point Location
- Point Location by Vertical Slab
- Trapezoidal Map & Adjacency Structure
- Trapezoidal Map Analysis & Construction
- Think-Outside-of-the-Box Graphics Picking Algorithm
- Next Time:
Homework 3 - CGAL Programming Task

- Compute triangulation of input polygon
 & triangulation of “pockets” outside
 input polygon but inside convex hull
- Compute areas
- Compute changes to
 boundary edges
- Leverage CGAL libraries for
 convex hull & triangulation

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 3
Outline for Today

● Homework 3 Questions?
● Last Time: kD Trees & Range Trees
● Motivating Application: Point Location
● Motivating Application: 2D/3D Mouse “Picking” for Graphics
● Brute Force Point Location
● Point Location by Vertical Slab
● Trapezoidal Map & Adjacency Structure
● Trapezoidal Map Analysis & Construction
● Think-Outside-of-the-Box Graphics Picking Algorithm
● Next Time:
Higher Dimensional Database Queries

- Return all data points with
 - x value in range $[x_0, x_1]$
 - y value in range $[y_0, y_1]$
 - z value in range $[z_0, z_1]$
 - and …

Find all values in an axis parallel box:
 - a "rectangular range query"
 - a.k.a. "orthogonal range query"

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 5
Using Photon Map for Rendering

- Find the tightest sphere capturing k photons
- Divide the energy from those photons by the surface area covered by that sphere
- What is the best data structure to store millions of photons?
2D kd Tree Query Algorithm

- At each split point
- Determine if the query box overlaps the split line
- Recurse down one or both branches
- If a subtree lies complete inside the box, return all items in that subtree
- Perform filtering in the leaves as necessary

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 5
2D kd Tree Query Analysis

- 1 item is stored per leaf node
- For a query that will collect \(k \) items
- **Best/Average(?) Case:**
 - An approximately square query (equal width & height)
 - touches/overlaps \(O(k) \) leaves
 - gathering leaves \(O(\log n + k) \)
 - \(\text{Overall} \rightarrow O(\log n + k) \)
- **Worst Case Query:**
 - For a skinny / lopsided query box
 - touches/overlaps \(- \sqrt{n} + k \) leaves
 - gathering leaves \(O(\sqrt{n} + k) \)
 - \(\text{Overall} \rightarrow O(\sqrt{n} + k) \)
Is Query Time $= O(\sqrt{n} + k)$ a problem?

- $O(1) \ < \ O(\log n) \ < \ O(\log^2 n) \ < \ O(\sqrt{n}) \ < \ O(n)$
2D Range Tree (and higher dimension!)

How much memory does it use?

- Each point p is stored once in the level 1 (organized by x) tree
- And many times in level 2 (organized by y) trees
- How many level 2 trees? And how big are they?
 - 1 tree with n values
 - 2 trees with $n/2$ values
 - 4 trees with $n/4$ values
 - ...
 - n trees with 1 values

$\rightarrow O(n \log n)$ memory
Summary Comparison

- For n points, dimension d, with query to collect k items
- kd Tree
 - Construction time: $O(n \log n)$
 - Memory: $O(n)$
 - Query time
 - Square(ish) box: $O(\log n + k)$
 - Worst case (long, skinny box): $O(n^{(1-1/d)} + k)$
- Range Tree
 - Construction time $\rightarrow O(n \log^{d-1} n)$
 - Memory $\rightarrow O(n \log^{d-1} n)$
 - Query time $\rightarrow O(\log^d n + k)$

Tradeoff:
Use more memory
Faster runtime
Outline for Today

- Homework 3 Questions?
- Last Time: kD Trees & Range Trees
- Motivating Application: Point Location
- Motivating Application: 2D/3D Mouse “Picking” for Graphics
- Brute Force Point Location
- Point Location by Vertical Slab
- Trapezoidal Map & Adjacency Structure
- Trapezoidal Map Analysis & Construction
- Think-Outside-of-the-Box Graphics Picking Algorithm
- Next Time:
Motivation Application: GPS Point Localization

- Given a 2D coordinate, e.g., a latitude & longitude
- What region of the ocean contains this point?
 - Access currents, weather, etc.

NASA Scientific Visualization Studio
https://svs.gsfc.nasa.gov/
Graphics/VR Application: What is “Picking”?

- Get the (3D) world coordinates of a (2D) mouse click
- Identify which object was selected and the point on the object closest to the click
- Do we as users take this for granted??
 - What are the performance bottlenecks?
 - What are the usability concerns?

https://www.csit.carleton.ca/~rteather/pdfs/GI_2018_EZCursorVR.pdf
Graphics Application: 3D Painting

http://www-ui.is.s.u-tokyo.ac.jp/~takeo/gallery/chameleon.png
Outline for Today

- Homework 3 Questions?
- Last Time: kD Trees & Range Trees
- Motivating Application: Point Location
- Motivating Application: 2D/3D Mouse “Picking” for Graphics
- **Brute Force Point Location**
- Point Location by Vertical Slab
- Trapezoidal Map & Adjacency Structure
- Trapezoidal Map Analysis & Construction
- Think-Outside-of-the-Box Graphics Picking Algorithm
- Next Time:
“Picking” by Ray Tracing

- Construct a ray from the eye through the image plane into the scene
- Intersect with all objects in the scene
- Keep the closest

Concerns:
- Cost of intersection
- How often are you asking?
 - on click
 - continuously
- Position imprecision/noise
Brute Force Picking Algorithm

- Given a planar subdivision
 - E.g., a collection of non-overlapping triangles (or polygons) that cover the plane
- And a query point Q
- Which triangle/polygon is Q inside of?
 - E.g., T_7
Is Query Point *inside* a specific Triangle?

- Compare the point to each line segment
- Are you on the “right side” of all three line segments?
- Are you on the “wrong side” of one or two segments?

- Use cross product! (more on this later…)
Is Query Point *inside* a specific Triangle?

- Does the half edge adjacency data structure accelerate this query?
Is Query Point *inside* a specific Triangle?

- Does the half edge adjacency data structure accelerate this query?
 - *Unfortunately* … NO!
 - *While we can navigate to the adjacent neighbors, we can NOT do better than a* $O(n)$ *linear floodfill to find the correct triangle.*
Outline for Today

- Homework 3 Questions?
- Last Time: kD Trees & Range Trees
- Motivating Application: Point Location
- Motivating Application: 2D/3D Mouse “Picking” for Graphics
- Brute Force Point Location
- **Point Location by Vertical Slab**
- Trapezoidal Map & Adjacency Structure
- Trapezoidal Map Analysis & Construction
- Think-Outside-of-the-Box Graphics Picking Algorithm
- Next Time:
Point Location in Planar Subdivision

- Given v vertices, n edges, and f polygonal faces
- Which polygonal region contains the query point Q?
Point Location in Planar Subdivision

- Given \(v \) vertices, \(n \) edges, and \(f \) polygonal faces
- Which polygonal region contains the query point \(Q \)?
- Let’s slice the plane into vertical “slabs”
- Draw a vertical line through every point

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 6
Point Location in Planar Subdivision

Let’s assume “General Position”:

- No two points have same x coordinate
- There will be no vertical segments!
- The query point will not be on a vertical segment or on a vertex.
- \textit{Workaround is to have a tie breaker, rotate/shear the diagram a tiny amount}
Point Location in a Vertical Slab?

- Within this slab, the line segments:
 - Do not cross
 (guaranteed by planar subdivision construction)
 - Do not start or stop
 (we’ve split at every vertex)
- We can sort the line segments vertically
 (by left endpoint’s y coordinate)
- Which trapezoid is Q located within?
 - Each trapezoid is mapped back
to the original polygonal face
Is Query Point above (or below) Line Segment?

- $P_1_x < Q_x < P_2_x$
- Is $0^\circ < \Theta < 180^\circ$
Cross Product

- If the $\Theta > 0^\circ$ & $\Theta < 180^\circ$, then $\mathbf{a} \times \mathbf{b}$ will be positive in the z axis.
- If the $\Theta > 180^\circ$ & $\Theta < 360^\circ$, then $\mathbf{a} \times \mathbf{b}$ will be negative in the z axis.
- If \mathbf{a} is parallel to \mathbf{b} ($\Theta = 0^\circ$ or $\Theta = 180^\circ$), then $\mathbf{a} \times \mathbf{b}$ will have zero magnitude.
- $| \mathbf{a} \times \mathbf{b} | = \sin \Theta$

\[
\mathbf{a} \times \mathbf{b} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
 a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3
\end{vmatrix}
= (a_2 b_3 - a_3 b_2)\mathbf{i} - (a_1 b_3 - a_3 b_1)\mathbf{j} + (a_1 b_2 - a_2 b_1)\mathbf{k}
\]
Analysis: Running Time

- Algorithm Preprocess

- Point Location Algorithm
Analysis: Running Time

- Algorithm Preprocess
 - Sort slabs left to right
 - Within each slab, sort trapezoids from top to bottom

- Point Location Algorithm
 - Binary search to locate the correct slab between two points
 - Left vertical \(x < Q_x < \) right vertical \(x \)
 - Binary search to locate correct trapezoid
 - Q is below the upper segment and above the lower segment
Analysis: Running Time

- Algorithm Preprocess
 - Sort slabs left to right → $O(n \log n)$
 - Within each slab, sort trapezoids from top to bottom → $O(n \log n)$
- Point Location Algorithm
 - Overall: → $O(\log n)$
 - Binary search to locate the correct slab between two points
 - Left vertical $x < Q_x < $ right vertical x → $O(\log n)$
 - Binary search to locate correct trapezoid
 - Q is below the upper segment and above the lower segment → $O(\log n)$
Analysis: Memory Usage

- Unfortunately, this representation is very costly.
- It redundantly storing every many faces in many slabs.
- In the worst case:

\[\frac{n}{4} \text{ slabs} \]

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 6
Analysis: Memory Usage

- Unfortunately, this representation is very costly.
- It redundantly storing every many faces in many slabs.
- In the worst case:
 - Every polygon appears in nearly every slab! → $O(n^2)$
- Even average/expected case is unacceptable: → $O(n \sqrt{n})$
Outline for Today

- Homework 3 Questions?
- Last Time: kD Trees & Range Trees
- Motivating Application: Point Location
- Motivating Application: 2D/3D Mouse “Picking” for Graphics
- Brute Force Point Location
- Point Location by Vertical Slab
 - Trapezoidal Map & Adjacency Structure
 - Trapezoidal Map Analysis & Construction
 - Think-Outside-of-the-Box Graphics Picking Algorithm
- Next Time:
Idea: Reduce Redundant Storage

- Horizontally merge some of these cells
- Split vertically at every vertex
- But stop splitting when you reach the closest line segment above & below

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 6
This defines a planar subdivision of with full coverage of the plane by non-overlapping

- convex trapezoids
- degenerate trapezoids:
 - triangles
Can we connect these triangles and trapezoids with a classic half-edge adjacency data structure?
Can we connect these triangles and trapezoids with a classic half-edge adjacency data structure?

- **No!**

Many of the faces have one or more “T junctions” on their top and/or bottom edges.

- This is NOT ALLOWED with a traditional polygonal planar subdivision.

Adjacency Structure

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 6
Classic Half-Edge Adjacency Structure

- Each face points to a half edge
- Each vertex points to a half edge
- Each half edge points:
 - Its opposite edge – only 1!
 - Its next edge
 - Its face
 - Its vertex
- A hacked modification would require an array of unknown size to point at all “opposite” edges

This would be inefficient and an implementation nightmare!

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 6
Trapezoid Map Adjacency Structure

Instead… each trapezoid (or triangle) points to:

- line segment *top*, makes upper boundary
- line segment *bottom*, makes lower boundary
- vertex *leftp*, defines left vertical boundary
- vertex *rightp*, defines right vertical boundary

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 6
Trapezoid Map Adjacency Structure

Instead... each trapezoid (or triangle) points to:

- line segment **top**, makes upper boundary
- line segment **bottom**, makes lower boundary
- vertex **leftp**, defines left vertical boundary
- vertex **rightp**, defines right vertical boundary

Additionally... each trapezoid Δ may have up to 4 adjacent neighbors (or NULL if they do not exist)

- **upper left neighbor**, shares top and leftp
- **lower left neighbor**, shares bottom and leftp
- **upper right neighbor**, shares top and rightp
- **lower right neighbor**, shares bottom and rightp
Trapezoid Map Adjacency Structure

- Does this new adjacency structure allow us to navigate through the structure more efficiently, faster than a $O(n)$ floodfill for the classic polygon adjacency structure?
Trapezoid Map Adjacency Structure

- Does this new adjacency structure allow us to navigate through the structure more efficiently, faster than a $O(n)$ floodfill for the classic polygon adjacency structure?

- Unfortunately, no…

- But we can build a binary tree (actually a DAG) for this structure to perform these queries!
Outline for Today

- Homework 3 Questions?
- Last Time: kD Trees & Range Trees
- Motivating Application: Point Location
- Motivating Application: 2D/3D Mouse “Picking” for Graphics
- Brute Force Point Location
- Point Location by Vertical Slab
- Trapezoidal Map & Adjacency Structure
- Trapezoidal Map Analysis & Construction
- Think-Outside-of-the-Box Graphics Picking Algorithm
- Next Time:
Directed Acyclic Graph (DAG)

- Intermediate notes are vertices (vertical lines) and line segments
- The leaves are the trapezoidal regions (map back to original polygons)
Directed Acyclic Graph (DAG)

- Intermediate notes are vertices (vertical lines) and line segments
- The leaves are the trapezoidal regions (map back to original polygons)

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 6
Analysis: Directed Acyclic Graph (DAG)

Size of the DAG?

- # of leaves = # of trapezoids
- # of intermediate nodes = # of vertices + # of line segments
- Height of DAG

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 6
Analysis: Directed Acyclic Graph (DAG)

Size of the DAG?

- # of leaves = # of trapezoids
 \[\rightarrow O(n) \]
- # of intermediate nodes
 = # of vertices + # of line segments
 \[\rightarrow O(n) \]
- Height of DAG
 \[\rightarrow O(\log n) \text{ best case} \]
 \[\rightarrow O(n) \text{ worst case} \]
- Use Randomized Incremental Construction to achieve height
 \[\rightarrow O(\log n) \text{ expected case!} \]
Randomized Incremental Construction

- Randomize the order of the line segments
- Inserting the segments one at a time
- Handle all of the cases

Book has lengthy description of the full algorithm & proof!

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 6
Analysis: Directed Acyclic Graph (DAG)

- Height of the DAG?
 $\rightarrow O(\log n)$ expected

- Query time to locate the trapezoid/polygon containing point Q?
 $\rightarrow O(\log n)$ expected

- Cost to construct?
 $\rightarrow O(n \log n)$ expected

Book has lengthy description of the full algorithm & proof!

Same runtime as vertical slabs!
Linear memory usage!
Outline for Today

● Homework 3 Questions?
● Last Time: kD Trees & Range Trees
● Motivating Application: Point Location
● Motivating Application: 2D/3D Mouse “Picking” for Graphics
● Brute Force Point Location
● Point Location by Vertical Slab
● Trapezoidal Map & Adjacency Structure
● Trapezoidal Map Analysis & Construction
● Think-Outside-of-the-Box Graphics Picking Algorithm
● Next Time:
"Picking" by the Framebuffer

- Graphics “Hack”
- Take advantage of fast GPU hardware rendering
- Color each object a different, unique color (no lighting/shading)
- Grab the color of the pixel from the framebuffer (object id)
- Grab the z-value (depth) from the depth buffer

"Capturing and Animating Occluded Cloth" White, Crane, & Forsyth, SIGGRAPH 2007
“Picking” by the Framebuffer

- Are there enough colors?
- Screen Resolution

"Capturing and Animating Occluded Cloth" White, Crane, & Forsyth, SIGGRAPH 2007
“Picking” by the Framebuffer

- Are there enough colors?
 - 3 colors (RGB)
 - w/ 8 bits each
 - \(2^8 \times 2^8 \times 2^8 = 2^{24} = 16\) million

- Screen Resolution
 - “4k” = 4096 x 2160
 - = 9 million pixels
 - “8k” = 7680 x 4320
 - = 33 million pixels

“Capturing and Animating Occluded Cloth”
White, Crane, & Forsyth, SIGGRAPH 2007
Painting by Picking a Picket Fence?

2D → 3D & Usability:

- You “click” on a picket to start painting
- Move up and down, you stay on the picket
- Move left or right, you fall between the pickets.
 - Does you hover in the air between pickets?
 - Does your mouse z coordinate change?
 - Do you start painting the ground?

https://www.fencenashville.net/
Outline for Today

- Homework 3 Questions?
- Last Time: kD Trees & Range Trees
- Motivating Application: Point Location
- Motivating Application: 2D/3D Mouse “Picking” for Graphics
- Brute Force Point Location
- Point Location by Vertical Slab
- Trapezoidal Map & Adjacency Structure
- Trapezoidal Map Analysis & Construction
- Think-Outside-of-the-Box Graphics Picking Algorithm
- Next Time: