CSCI 4560/6560 Computational Geometry

Lecture 11: Voronoi Diagrams,
 Part 2

Outline for Today

- Homework 4 Posted soon... (sorry)
- Last Time: Line Sweep construction of Voronoi Diagram
- Closest Point to a Line Segment
- Voronoi Diagram of Line Segments
- Motivation Application: Robotic Motion Planning
- Farthest Point Voronoi Diagram
- Motivating Application: Smallest Annulus
- Medial Axis \& Higher-Order Voronoi Diagrams
- Next Time: Centroidal Voronoi Diagram \& K-Means Clustering

Outline for Today

- Homework 4 Posted soon
- Last Time: Line Sweep construction of Voronoi Diagram
- Closest Point to a Line Segment
- Voronoi Diagram of Line Segments
- Motivation Application: Robotic Motion Planning
- Farthest Point Voronoi Diagram
- Motivating Application: Smallest Annulus
- Medial Axis \& Higher-Order Voronoi Diagrams
- Next Time: Centroidal Voronoi Diagram \& K-Means Clustering

Voronoi Diagram - Social Geography

- There are a bunch of grocery stores spread across a large city.
- You're planning to open another grocery store at a specific location.
- How many customers can you expect at the new store location?
Customers will choose the new store if it is closer to their home than their current store.
- a.k.a. The "Post Office Problem"

Observation: Perpendicular Bisector

- Points on the edge between two Voronoi cells are equidistant from two Voronoi sites.
- Edges of Voronoi cells are perpendicular bisectors of two Voronoi sites.

Observation: Intersection of Half Spaces

- All points that lie on one side of the perpendicular bisector,
- Are the half-space of points that will chose site A over site B because site A is closer than site B.
- This suggests a brute force construction algorithm...

Observation: Voronoi Cells are Convex

- Because a Voronoi cell is the intersection of half-spaces...
- A Voronoi Cell must be convex
- Note: Some Voronoi Cells are unbounded

How to Graph a Parabola

- Typical parabola equation $y=a x^{2}+b x+c$
- Rewrite as

$$
(x-h)^{2}=4 p(y-k)
$$

- h gives you the vertical axis of symmetry
- $p \& k$ gives you the focus \& directrix

Outline for Today

- Homework 4 Posted soon
- Last Time: Line Sweep construction of Voronoi Diagram
- Closest Point to a Line Segment
- Voronoi Diagram of Line Segments
- Motivation Application: Robotic Motion Planning
- Farthest Point Voronoi Diagram
- Motivating Application: Smallest Annulus
- Medial Axis \& Higher-Order Voronoi Diagrams
- Next Time: Centroidal Voronoi Diagram \& K-Means Clustering

Closest Point on a Line Segment

Need to explicitly handle 3 cases:

https://diego.assencio.com/?index=ec3d5dfdfc0b6a0d147a656f0af332bd

Closest Point on a Line Segment

Need to explicitly handle 3 cases:

https://diego.assencio.com/?index=ec3d5dfdfc0b6a0d147a656f0af332bd

Orthogonal Projection of Point to Line

Orthogonal Projection of Point to Line

- Break the vector a into two subvectors, one parallel to \mathbf{b}, one perpendicular to \mathbf{b}
- If $\Theta<90^{\circ}, \cos \Theta$ will be positive
- If $\Theta>90^{\circ}, \cos \Theta$ will be negative

$$
\begin{aligned}
& a_{1}=\|\mathbf{a}\| \cos \theta=\mathbf{a} \cdot \hat{\mathbf{b}} \\
& \mathbf{a}_{1}=(\mathbf{a} \cdot \hat{\mathbf{b}}) \hat{\mathbf{b}}=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|} \frac{\mathbf{b}}{\|\mathbf{b}\|}=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|^{2}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b}
\end{aligned}
$$

Outline for Today

- Homework 4 Posted soon
- Last Time: Line Sweep construction of Voronoi Diagram
- Closest Point to a Line Segment
- Voronoi Diagram of Line Segments
- Motivation Application: Robotic Motion Planning
- Farthest Point Voronoi Diagram
- Motivating Application: Smallest Annulus
- Medial Axis \& Higher-Order Voronoi Diagrams
- Next Time: Centroidal Voronoi Diagram \& K-Means Clustering

Voronoi Diagram of Line Segments

- Points equidistant between two points form a line.

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 7

Voronoi Diagram of Line Segments

- Points equidistant between two points form a line.

Voronoi Diagram of Line Segments

- Points equidistant between two points form a line.
- Points equidistant between a point and a line form a parabola.

Voronoi Diagram of Line Segments

- Points equidistant between two points form a line.
- Points equidistant between a point and a line form a parabola.

Focus \&
Directrix

Voronoi Diagram of Line Segments

- Points equidistant between two points form a line.
- Points equidistant between a point and a line form a parabola.

Focus \&
Directrix

Voronoi Diagram of Line Segments

- Points equidistant between two points form a line.
- Points equidistant between a point and a line form a parabola.
- Points equidistant between two lines form a line.

Voronoi Diagram of Line Segments

- Points equidistant between two points form a line.
- Points equidistant between a point and a line form a parabola.
- Points equidistant between two lines form a line.

Voronoi Diagram of Line Segments

- Points equidistant between two points form a line.
- Points equidistant between a point and a line form a parabola.
- Points equidistant between two lines form a line.

Voronoi Diagram of Line Segments

- Points equidistant between two points form a line.
- Points equidistant between a point and a line form a parabola.
- Points equidistant between two lines form a line.

Voronoi Diagram of Line Segments

- Points equidistant between two points form a line.
- Points equidistant between a point and a line form a parabola.
- Points equidistant between two lines form a line.

Voronoi Diagram of Line Segments

- Points equidistant between two points form a line.
- Points equidistant between a point and a line form a parabola.
- Points equidistant between two lines form a line.

Sweep Line: More Complicated Beach Front

- Fortunately, the complexity (\# of segments) is still $O(n)$ in the size of the input - now line segments instead of just points!

Sweep Line: More Complicated Beach Front

- Fortunately, the complexity (\# of segments) is still $\mathrm{O}(\mathrm{n})$ in the size of the input - now line segments instead of just points!

Outline for Today

- Homework 4 Posted soon
- Last Time: Line Sweep construction of Voronoi Diagram
- Closest Point to a Line Segment
- Voronoi Diagram of Line Segments
- Motivation Application: Robotic Motion Planning
- Farthest Point Voronoi Diagram
- Motivating Application: Smallest Annulus
- Medial Axis \& Higher-Order Voronoi Diagrams
- Next Time: Centroidal Voronoi Diagram \& K-Means Clustering

Finished Voronoi Diagram of Line Segments

- Finished diagram has parabolic curved segments
- But is still $O(n)$ in complexity (\# of segments)
- And can be computed in $O(n \log n)$
- But why is this useful?

Application: Robotics \& Motion Planning

- Let's move a circular/disk robot from the start position to the end position.
- Step 1: Project the robot center to the closest Voronoi edge (line segment or parabolic curve)

Application: Robotics \& Motion Planning

- Step 1: Project the robot center to the closest Voronoi edge (line segment or parabolic curve)
- Step 2: Remove edges from the diagram graph with smallest distance to segment < radius.

Application: Robotics \& Motion Planning

- Step 2: Remove edges from the diagram graph with smallest distance to segment < radius.
- \quad Step 3: Search the remaining graph for a connected path from start to end.

Outline for Today

- Homework 4 Posted soon
- Last Time: Line Sweep construction of Voronoi Diagram
- Closest Point to a Line Segment
- Voronoi Diagram of Line Segments
- Motivation Application: Robotic Motion Planning
- Farthest Point Voronoi Diagram
- Motivating Application: Smallest Annulus
- Medial Axis \& Higher-Order Voronoi Diagrams
- Next Time: Centroidal Voronoi Diagram \& K-Means Clustering

Outline for Today

- Homework 4 Posted soon
- Last Time: Line Sweep construction of Voronoi Diagram
- Closest Point to a Line Segment
- Voronoi Diagram of Line Segments
- Motivation Application: Robotic Motion Planning
- Farthest Point Voronoi Diagram
- Motivating Application: Smallest Annulus
- Medial Axis \& Higher-Order Voronoi Diagrams
- Next Time: Centroidal Voronoi Diagram \& K-Means Clustering

Voronoi Cell: Intersection of Half Spaces

- All points that lie on one side of the perpendicular bisector,
- Are the half-space of points that will chose site A over site B because site A is closer than site B.

Voronoi Cell: Intersection of Half Spaces

- All points that lie on one side of the perpendicular bisector,
- Are the half-space of points that will chose site A over site C because site A is closer than site C.

Observation: Intersection of Half Spaces

- All points that lie on one side of the perpendicular bisector,
- Are the half-space of points that will chose site A over site D because site A is closer than site D.

Observation: Intersection of Half Spaces

- All points that lie on one side of the perpendicular bisector,
- Are the half-space of points that will chose site A over site E because site A is closer than site E.

Voronoi Cell: Intersection of Half Spaces

- The intersection of these half-spaces is the Voronoi Cell for A - all points that choose A as their closest Voronoi site.

Definition: Farthest Point Voronoi Cell

- The intersection of these half-spaces is the Voronoi Cell for A - all points that choose A as their closest Voronoi site.
- The intersection of the opposite half-space is the Farthest Point Voronoi Cell - all points that indicate that A is their furthest Voronoi site.

Definition: Farthest Point Voronoi Cell

- The intersection of these half-spaces is the Voronoi Cell for A - all points that choose A as their closest Voronoi site.
- The intersection of the opposite half-space is the Farthest Point Voronoi Cell - all points that indicate that A is their furthest Voronoi site.

Farthest-Point Voronoi Diagram

- Observation: Only sites on the convex hull will have a cell in the farthest point diagram.
- Observation: All farthest-point cells are unbounded.
- Observation: The diagram is a tree - no cycles!
If there were a cycle, that would mean we had a bounded cell.

Outline for Today

- Homework 4 Posted soon
- Last Time: Line Sweep construction of Voronoi Diagram
- Closest Point to a Line Segment
- Voronoi Diagram of Line Segments
- Motivation Application: Robotic Motion Planning
- Farthest Point Voronoi Diagram
- Motivating Application: Smallest Annulus
- Medial Axis \& Higher-Order Voronoi Diagrams
- Next Time: Centroidal Voronoi Diagram \& K-Means Clustering

Finding the Smallest-Width Annulus

- Manufacturing Application:

This object is supposed to be perfectly round (spherical), given precise measurements of the actual object, what are the error bounds?

Finding the Smallest-Width Annulus

- 3 points on the outer circle, 1 point on the inner circle
- 1 point on the outer circle, 3 points on the inner circle
- 2 points on the outer circle, 2 points on the inner circle

Finding the Smallest-Width Annulus

- Easy to compute once we know the center
(it is the center of both the inner \& outer circle)
- What points might be the center? Any point on the plane?

Computational Geometry Atgorithmsame Applieations,

Finding the Smallest-Width Annulus

- Easy to compute once we know the center (it is the center of both the inner \& outer circle)
- What points might be the center? It must be:
- A vertex of the Voronoi Diagram (equally close to 3 sites) OR
- A vertex of the Farthest Point Voronoi Diagram (equally far from 3 sites) OR
- An intersection of the Voronoi Diagram and Farthest Point Voronoi Diagram (equally close to 2 sites AND equally far from 2 sites)

Finding the Smallest-Width Annulus

- Easy to compute once we know the center (it is the center of both the inner \& outer circle)
- What points might be the center? It must be:
- A vertex of the Voronoi Diagram (equally close to 3 sites) OR
- A vertex of the Farthest Point Voronoi Diagram (equally far from 3 sites) OR
- An intersection of the Voronoi Diagram and Farthest Point Voronoi Diagram (equally close to 2 sites AND equally far from 2 sites)

Outline for Today

- Homework 4 Posted soon
- Last Time: Line Sweep construction of Voronoi Diagram
- Closest Point to a Line Segment
- Voronoi Diagram of Line Segments
- Motivation Application: Robotic Motion Planning
- Farthest Point Voronoi Diagram
- Motivating Application: Smallest Annulus
- Medial Axis \& Higher-Order Voronoi Diagrams
- Next Time: Centroidal Voronoi Diagram \& K-Means Clustering

Medial Axis - Voronoi Diagram of Simple Polygon

- a.k.a. Skeleton
- Applications to:
- Shape Analysis
- Deformation

Application of Medial Axis

- Placing the skeleton inside of a 3D object
- Automated Rigging

"Medial-Axis-Driven Shape Deformation with Volume Preservation" Lan, Yao, Huang, Guo, Visual Computer 2017

Higher-Order Voronoi / k-Closest Sites

- For example, $\mathrm{k}=2 \ldots$
- Subdivide the plane into regions that have the same closest and second closest sites

Outline for Today

- Homework 4 Posted soon
- Last Time: Line Sweep construction of Voronoi Diagram
- Closest Point to a Line Segment
- Voronoi Diagram of Line Segments
- Motivation Application: Robotic Motion Planning
- Farthest Point Voronoi Diagram
- Motivating Application: Smallest Annulus
- Medial Axis \& Higher-Order Voronoi Diagrams
- Next Time: Centroidal Voronoi Diagram \& K-Means Clustering

